纳米材料和生物结构文摘第 18 卷,第 1 期,2023 年 1 月 - 3 月,第 55 - 68 页琥珀酸物种对甘氨酸单晶的结构、光谱、光学、Z 扫描、倍频、光电导和抗菌性能的影响 NS Priya a、SA Chudar Azhagan b、* a 印度哥印拜陀尼赫鲁工程技术学院物理系 b 印度哥印拜陀政府技术学院物理系以琥珀酸为添加剂,通过传统溶剂缓慢蒸发路线生长甘氨酸单晶。研究了琥珀酸对甘氨酸同质异形体的生长、光学和介电性能的影响。通过振动 FTIR 光谱光度计鉴定了功能团的存在。较高频率范围内的低介电常数和介电损耗证明生长的晶体可用于倍频应用。计算了生长晶体的激光损伤阈值能量。通过 Z 扫描实验评估了添加琥珀酸的甘氨酸晶体的三阶非线性磁化率 χ (3) (esu)。 (2022 年 8 月 14 日收到;2023 年 1 月 12 日接受) 关键词:γ-甘氨酸、琥珀酸、介电材料、光子应用 1. 简介寻找新的复杂 NLO 材料是当前研究扩展科学和通信技术的基本部分。铁电材料在光电子领域具有广泛的工业应用,例如电容器、军事服务、执行器、电信、非易失性存储设备、自动门禁系统、高性能栅极绝缘体和医疗设备等 [1-2]。铁电材料因其明确的介电、压电和热电特性而成为广泛电子和机电一体化设备中的首选材料。近年来,具有非线性光学 (NLO) 特性的铁电材料因其在光电子和光子技术领域的潜在应用而备受关注。铁电琥珀酸具有良好的热电性能。琥珀酸是一种天然存在的有机材料,属于二羧酸,是三羧酸循环的中间体。它通常用于生物和工业应用,也用作红外 (IR) MALDI 分析方法中的基质 [3-4]。目前,琥珀酸晶体广泛用于制造高电子迁移率晶体管 (HEMT)。琥珀酸与有机材料的结合提高了其铁电性能 [5]。在多晶型晶体中,氨基酸甘氨酸是最简单的晶体,在环境条件下表现出三种不同的多晶型,即 α-甘氨酸、β-甘氨酸和 γ-甘氨酸。甘氨酸的有机和无机复合物最近因其铁电、介电和非线性光学特性而受到科学界的关注。γ-甘氨酸晶体表现出强压电和非线性光学效应 [6-8]。甘氨酸同质异形体的非线性和介电响应是器件制造应用的重要参数。为了制造非线性光学器件,材料应在高频区域具有低介电常数和低介电损耗。此外,还要减少微电子工业中的 R c 延迟。如今,各种研究人员报告了 γ-甘氨酸单晶的一些重要特性 [9-12]。因此,在目前的研究中,已从琥珀酸添加剂环境中收获了 γ-甘氨酸单晶。
项目部门专业注册。编号 学号 姓名 性别 类别 州 M.Tech-BT 生物技术 生物技术 22P10091 22BT4101 RAJDIP BISWAS M SC 西孟加拉邦 M.Tech-BT 生物技术 生物技术 22P10107 22BT4102 MAHESWAR RAM SM OPEN 泰米尔纳德邦 M.Tech-BT 生物技术 生物技术 22P10179 22BT4103 SAYANI GHOSH F OPEN 西孟加拉邦 M.Tech-BT 生物技术 生物技术 22P10184 22BT4104 TIYASA BHUNIYA F OPEN 西孟加拉邦 M.Tech-BT 生物技术 生物技术 22P10190 22BT4105 NILANJAN PAUL M OPEN 西孟加拉邦 M.Tech-BT 生物技术 生物技术 22P10196 22BT4106 PIU DAS F OPEN 西孟加拉邦 M.Tech-BT 生物技术 生物技术 22P10240 22BT4107 INDRANI CHELL F OBC 西孟加拉邦 M.Tech-BT 生物技术 生物技术 22P10256 22BT4108 MAHIBALAN TM SC 泰米尔纳德邦 M.Tech-BT 生物技术 生物技术 22P10261 22BT4109 SEEMA MEHTO F OPEN 德里 M.Tech-BT 生物技术 生物技术 22P10342 22BT4110 PRINCE KUMAR TIWARI M GEN-EWS 北方邦M.Tech-BT 生物技术 生物技术 22P10349 22BT4111 KUNALIKA MHF OPEN 卡纳塔克邦 M.Tech-BT 生物技术 生物技术 22P10350 22BT4112 ABHISHEK KUMAR M OBC 比哈尔邦 M.tech-CE 土木工程 结构工程 22P10100 22CE4103 AVINASH SINGH M GEN-EWS 北方邦 M.tech-CE 土木工程 结构工程 22P10131 22CE4104 EKAMBARAM TADUKU M SC 安得拉邦 M.tech-CE 土木工程 结构工程 22P10134 22CE4105 SOUMYAJIT GHOSH M OPEN 西孟加拉邦 M.tech-CE 土木工程 结构工程 22P10143 22CE4107 ANJUNUR RAHMAN M OPEN 阿萨姆邦 M.tech-CE 土木工程 结构工程 22P10148 22CE4108 RAHUL KARMAKAR M SC 西孟加拉邦 M.tech-CE 土木工程 结构工程 22P10151 22CE4109 RRISHABH BHUSHAN HARIVEDI M SC 德里 M.tech-CE 土木工程 结构工程 22P10154 22CE4110 RAVI PRATAP SINGH M OPEN 北方邦M.tech-CE 土木工程 结构工程 22P10168 22CE4111 SRIJAN KUNDU M OPEN 西孟加拉邦 M.tech-CE 土木工程 结构工程 22P10194 22CE4113 BIKASH BEHERA M OBC 奥里萨邦 M.tech-CE 土木工程 结构工程 22P10213 22CE4114 SUBHASHISH PRASAD M OBC 贾坎德邦 M.tech-CE 土木工程 结构工程 22P10293 22CE4117 BIKRANT KUMAR YADAV M FS 其他 M.tech-CE 土木工程 结构工程22P10301 22CE4118 ADARSH KUMAR M OBC 安得拉邦 M.tech-CE 土木工程 结构工程 22P10309 22CE4119 BRIJESH CHAUHAN M OBC 北方邦 M.tech-CE 土木工程 结构工程 22P10318 22CE4121 ANCHAL PARIHAR F OPEN 北方邦 M.tech-CE 土木工程 结构工程 22P10338 22CE4123 BALLE VENKATA SATYANARAYANA M GEN-EWS 安得拉邦 M.tech-CE 土木工程 结构工程 22P10345 22CE4124 SHIKHA F OPEN Bihar M.tech-CE 土木工程结构工程 22P10353 22CE4125 SAMBARATHI PAVANKALYAN M OBC Telangana M.tech-CE 土木工程结构工程 22P10356 22CE4126 AMIN RAZA M OBC Jharkhand M.tech-CE 土木工程 岩土工程 22P10176 22CE4201 ANAND RAJ M OBC Bihar M.tech-CE 土木工程 岩土工程 22P10094 22CE4202 KESHAV KUMAR SINGH M OBC Bihar M.tech-CE 土木工程 岩土工程 22P10211 22CE4203 NIJEE PRIYA F OBC Bihar
S.No. 申请人ID学生名称父亲费用量课程1 4643730 Divya Tripathi Rajkumartripathi 25800 1030-BCA-B。 C. A. 2 4632401 Sawan Patil Jitendra 25800 1030-BCA-B。 C. A. 3 4674242 Sneha Fulware Anilfulware 25800 1030-BCA-B。 C. A. 4 4673961 Swati Carpenter Dineshcarpenter 25800 1030-BCA-B。 C. A.S.No.申请人ID学生名称父亲费用量课程1 4643730 Divya Tripathi Rajkumartripathi 25800 1030-BCA-B。C. A.2 4632401 Sawan Patil Jitendra 25800 1030-BCA-B。C. A.3 4674242 Sneha Fulware Anilfulware 25800 1030-BCA-B。C. A.4 4673961 Swati Carpenter Dineshcarpenter 25800 1030-BCA-B。C. A.
备忘录:CIR专家小组成员和联络人,来自:Priya Cherian,M.S。高级科学分析师/作家,CIR日期:2025年2月14日,主题:对封闭的化妆品中使用的八氧基诺酚的安全评估是对八氧基诺在化妆品中使用的安全评估的修订报告草案。(在PDF文档中,它被识别为report_octoxynols_032025)。The Panel first published a Final Report on these 25 ingredients in 2004, with the conclusion that based on the animal and clinical data included in the report, Octoxynol-9, -10, -11, -12, -13, -16, -20, -25, -30, -33, -40, and -70, Octoxynol-9 Carboxylic Acid, Octoxynol-20 Carboxylic Acid, Potassium八氧基醇12磷酸盐和八氧合钠9硫酸钠是安全的,如冲洗和外壳所用时所用。面板还得出结论,八氧基诺-1,-3,-5,-6,-7和-8,八氧合钠2乙烷磺酸钠,八氧基2硫酸钠2硫酸钠和甲氧基诺酚-6硫酸钠在Rinse -Off Off Octemety Products and Safe of Plusement and Safe Plusentation and Safe of consection和safe consection in consection和safe consection usection and Safe of consectics and safe of safe osscoctions; OriginalReport_octoxynols_032025)。在2023年6月的会议上,该小组决定重新开放此安全性评估,以探索这些成分的粘膜刺激潜力,并且由于新报告的其他婴儿产品中八氧基诺酚-9在0.1%中使用了0.1%(根据20222222年使用数据浓度)。在2023年12月,该小组审查了修订的报告草案,并确定评估评估,直到收到RLD对这些成分的收到。在2024年收集的RLD表明Octoxynol-9用于可能导致粘膜暴露的制剂中(例如,沐浴肥皂和沐浴露和一次性湿巾)。这些数据并不表示这些成分用于婴儿产品。同样根据RLD,Octoxynol-9是使用数量最高的成分(总计38种制剂)。根据2023 FDA VCRP数据,据报道Octoxynol-11是用途数量最多的成分(8种制剂)。根据2022年使用数据浓度,在面部和颈部制剂中,报告的使用浓度最高,导致皮肤上丢弃的真皮暴露量为1.5%八氧基诺12。许多已发表的文献都以“ Triton X-100”的名称确定。根据不同的来源,此名称对应于报告中综述的几种不同的八氧合基因成分(例如,八氧基1,八氧基诺9)。然而,在本报告的原始审查期间,人们认为Triton X-100仅提及八氧基诺9,因此,对于该报告,Triton X-100的数据在Octoxynol-9下包含。因此,由于小组审查了本报告上一次迭代的数据(如斜体化文本所示),他们应注意,列出为“八氧基诺酚-9”的数据可能指的是其他八氧合酚。此外,自报告的最后一次迭代以来发现的许多新数据都在Triton X-100上。这些研究包含在报告中,并以黄色突出显示。在整个报告中突出显示的其他文本包括2024年提交的RLD以及自小组上次在2023年12月看到该报告以来所做的任何更改。专家小组发表了关于1983年和2015年非氧基诺酚安全性的评论。按照上一篇评论的小组指示,这些数据已包括在内;但是,由于现在已经知道该成分可能是指多个八氧合酚,因此这些数据已在“八氧基醇(乙氧基重复单元数量未知)的子标题下合并到报告中。在皮肤,眼和粘膜测定中,使用Triton X-100作为模型刺激性/细胞毒性剂发现了几项研究。在对八氧基醇的最初安全评估中,面板依赖于非氧基醇的化学相似性(较长1个碳)来支持八氧基醇的安全性。因此,当缺少八氧醇的数据时,已经包括了诺氧基诺酚的数据,就像先前对八氧基醇的安全性评估中所做的那样; 2015年最终修订的非氧基诺酚(Nonoxynols2015_octoxynols_032025)的数据也已适用于潜在的Read-across源。
7 阿育吠陀医学与外科学士考试(专业) 425 201808902 F Londhe Veda Vinay 2022 年 11 月 _ 808/1100 73.45% 一等第一名 8 阿育吠陀医学与外科学士考试(专业) 456 201809176 F Todankar Amisha Pramod 2022 年 11 月 _ 779/1100 70.82% 一等第二名 9 阿育吠陀医学与外科学士考试(专业) 411 201811080 F Gogate Poorva Padmanabha 2022 年 11 月 _ 770/1100 70% 一等第三名 10 医学学士和外科学士考试(专业) 547 201810494 F Vedha R Shetye 2023 年 2 月 _ 666/900 74 NA 第一名 11 医学学士和外科学士考试(专业) 535 201810484 M Shirodkar Omkar Rajkumar 2023 年 2 月 _ 641/900 71.22 NA 第二名 12 医学学士和外科学士考试(专业) 521 201810476 F Rao Gautami Nitin 2023 年 2 月 _ 620/900 68.88 NA 第三名 13 美术学士(绘画)考试(专业) 6 20196933 F Firuza Rashida Rodrigues 2023 年 4 月 _ 428/600 71.30% 优异 第一名 14 美术学士(绘画)考试(专业) 17 20192721 M Praveen Deepak Zambaulikar 2023 年 4 月 _ 424/600 70.66% 优异 第二名 15 美术学士(绘画)考试(专业) 2 20192709 F Ashita Ajay Matondkar 2023 年 4 月 _ 423/600 70.50% 优异 第三名 16 美术学士(应用艺术)考试(专业) 8 20192990 S Jonathan Ananias Vas 2023 年 4 月 _ 419$1/600 69.83% 优异 第一名 17 美术学士(应用艺术)考试(专业) 22 20193003 F Sakshi Sandeep Hadfadkar 2023 年 4 月2023 _ 394/600 65.66% 一等 第二名 18 美术学士(应用艺术)考试(专业) 27 201903008 F Siya Vaibhav Tamba 2023 年 4 月 _ 388/600 64.66% 一等 第三名 19 美术硕士(应用艺术)考试(专业) 3 200900423 F Simoes Priya Merlin 2023 年 7 月 _ 400/600 66.66% 一等 第一名 20 美术硕士(应用艺术)考试(专业) 2 201704400 F Naik Siddhi Rajendra 2023 年 7 月 _ 360/600 60% 一等 第二名 21 美术硕士(应用艺术)考试(专业) 4 202105953 M Surve Shubham Rakesh Roshni 2023 年 7 月 _ 360/600 60% 一等 第二名 22 美术硕士(绘画)考试(专业) 4 201600855 M Phal Desai Ashish Ulhas 2023 年 7 月 _ 452/600 75.33% 优异 第一名 23 美术硕士(绘画)考试(专业) 5 201704378 M Velip Prayuj Prakash 2023 年 7 月 _ 439/600 73.10% 优异 第二名 24 美术硕士(绘画)考试(专业) 3 201600916 M Naik Sahil Somnath 2023 年 7 月 _ 413/600 68.83% 一等 三等 25 水文硕士考试(专业) 3 201812368 M Avishekh Yadav 2023 年 1 月 _ 1528/1900 80.40% O(优秀)第一名 26 水文硕士考试(专业) 2 201812367 M Loghanathan V 2023 年 1 月 _ 1522/1900 80.10% O(优秀)第二名 27 水文硕士考试(专业) 1 201711212 M Kumar Shaswat 2023 年 1 月 _ 1474/1900 77.50% A+ 优秀 第三名 28 医学博士 呼吸医学考试(专业) 21 202012114 M Dr. Arjun EK 2023 年六月 _ 563 70.375 通过 第一名 29 医学博士 呼吸医学考试(专业) 25 201308969 F Dr. Varnana Suresh AT 2023 年六月 _ 540 67.5 通过 第二名 30 医学博士 呼吸医学考试(专业) 24 202011687 F Dr. Ranjitha MR 2023 年六月 _ 516 64.5 通过 第三名
[3] Huan Zhao; Linghan Zhu;江西li; Vigneshwaran Chandrasekaran;乔恩·凯文·鲍德温(Jon Kevin Baldwin);迈克尔·佩特斯(Michael t Pettes); Andrei Piryatinski;李阳;汉·htoon。操纵近红外量子光生成的层间激子。纳米字母。2023,23,11006-11012。[4] Xiangzhi li;安德鲁·琼斯(Andrew C Jones); Junho Choi; Huan Zhao; Vigneshwaran Chandrasekaran;迈克尔·佩特斯(Michael t Pettes); Andrei Piryatinski; ma rta a tschudin;帕特里克·雷瑟(Patrick Reiser);大卫百老汇。在应变工程WSE2/NIPS3异质结构中,接近诱导的手性量子光生产生。自然材料。2023,22,1311-1316。[5] Huan Zhao;迈克尔·佩特斯(Michael t Pettes); Zheng;汉·htoon。位点对照的电信波长单光子发射器在原子上薄的Mote2中。nat Commun。2021,12,6753。[6] Huan Zhao; Beibei Wang; Fanxin Liu;小对Haozhe Wang; Wei Sun Leong;马克·史蒂文斯(Mark J Stevens); Priya Vashishta; aiichiro nakano;庆。流体流有助于范德华材料的确定性折叠。高级功能材料。2020,30,1908691。[7] Tong Wu†; Huan Zhao†; Fanxin Liu; Jing Guo;汉王。设备的机器学习方法 - 基于随机设备设备的玻尔兹曼机器的电路合作。ARXIV预印ARXIV:1905.04431。2019。[8] Shanyuan Niu†; Huan Zhao†; Yucheng Zhou; Huaixun Huyan;博伊恩赵;江宾;斯蒂芬·B·克罗宁(Stephen B Cronin);汉王; Jayakanth Ravichandran。中波和长波红外线二色性二色性二色性在六角形钙钛矿甲状腺素中。材料的化学。2018,30,4897-4901。[9] Shanyuan Niu†;格雷厄姆·乔†; Huan Zhao†; Yucheng Zhou;托马斯·奥维斯(Thomas Orvis); Huaixun Huyan;贾德·萨尔曼(Jad Salman); Krishnamurthy Mahalingam;布列塔尼·乌尔文(Brittany Urwin);江宾·吴(Jiangbin Wu)巨大的光学各向异性在准尺寸晶体中。nat光子学。2018,12,392。[10] Ivan Esqueda; Huan Zhao;汉王。有效的学习和横杆操作,具有原子薄的2-D材料化合物突触。应用物理学杂志。2018,124,152133。[11] Zhipeng Dong; Huan Zhao;唐·迪马齐奥(Don Dimarzio); Myung-Geun Han; Lihua Zhang;杰西·蒂斯(Jesse Tice);汉王; Jing Guo。由2-D材料启用了原子上的CBRAM:缩放行为和性能限制。电子设备上的IEEE交易。2018,65,4160-4166。[12] Huan Zhao; Zhipeng Dong;他天;唐·迪马尔兹(Don Dimarzi); Myung-Geun Han; Lihua Zhang;小对Fanxin Liu;朗山; Shu-Jen Han。原子上薄的femtojoule候选装置。高级材料。2017,29,1703232。[13] Bolin Liao†; Huan Zhao†; Ebrahim Najafi;小对他天;杰西·蒂斯(Jesse Tice);奥斯汀·J·明尼奇(Austin J Minnich);汉王;艾哈迈德·H·泽尔(Ahmed H Zewail)。黑磷中各向异性光载体动力学的时空成像。纳米字母。2017,17,3675-3680。[14] Huan Zhao†; Yuanrui li;道格拉斯·奥尔伯格(Douglas Ohlberg); Wei Shi; Wei Wu;汉王; ping-heng tan。 单层钼二硫化物纳米纤维具有高光学各向异性。 高级光学材料。 2016,4,756-762。 纳米研究。 2015,8,3651-3661。[14] Huan Zhao†; Yuanrui li;道格拉斯·奥尔伯格(Douglas Ohlberg); Wei Shi; Wei Wu;汉王; ping-heng tan。单层钼二硫化物纳米纤维具有高光学各向异性。高级光学材料。2016,4,756-762。纳米研究。2015,8,3651-3661。[15] Huan Zhao†; Jiangbin Wu†;宗宗; qiushi guo;小王;富兰斯Xia;李阳; Pingheng tan;汉王。在各向异性原子上稀薄的鼻鼻中的层间相互作用。[16] Yichen Jia; Huan Zhao; qiushi guo;小王;汉王;冯米亚。可调节的等离子体 - 声子偏振子中的分层石墨烯 - 甲状腺氮化硼异质结构。acs光子学。2015,2,907-912。[17] Huan Zhao; qiushi guo;富兰斯Xia;汉王。 二维材料用于纳米素化的应用。 纳米素化学。 2015,4,128-142。 [18]小王;亚伦·琼斯(Aaron M Jones);凯尔·塞勒(Kyle L Seyler); vy tran; Yichen Jia; Huan Zhao;汉王;李阳; Xiodong Xu;冯米亚。 单层黑磷中高度各向异性和稳健的激子。 纳米技术。 2015,10,517-521。[17] Huan Zhao; qiushi guo;富兰斯Xia;汉王。二维材料用于纳米素化的应用。纳米素化学。2015,4,128-142。[18]小王;亚伦·琼斯(Aaron M Jones);凯尔·塞勒(Kyle L Seyler); vy tran; Yichen Jia; Huan Zhao;汉王;李阳; Xiodong Xu;冯米亚。单层黑磷中高度各向异性和稳健的激子。纳米技术。2015,10,517-521。
卫星服务的双重使用提出了有关反对其在武装冲突期间功能的合法性的问题。本文的重点是研究国际人道主义法的关键原则的内容,即的区别和相称性,关于它们在空间活动中的应用。在这种情况下,分析了对军事行动的太空服务投入前后评估的标准。还观察到由于违反人道主义法而产生空间碎片云的风险。因此,开发和批准其他方案IV的建议将构成平民物体与军事目标区分开,并确定与攻击成正比的损害的范围和程度,被认为是能够在空间和网络战争期间节省外层空间资源和空间服务的手段。