进行风洞试验,测量亚音速流中圆柱体上半球转塔的非稳定表面压力场。这些测量值是使用与快速响应压敏涂料耦合的压力传感器获得的。分析了 0.5 马赫流动(Re D ≈ 2 × 10 6 )在三种不同转塔突出距离下产生的表面压力场数据。之前,使用适当的正交分解发现了转塔上的主要表面压力模式。结果表明,转塔向自由流的突出程度越大,展向反对称表面压力场波动的发生率就越高。这些反对称压力波动是由反对称涡脱落引起的。然而,当使用部分浸没的半球形转塔几何形状时,结果表明这种反对称模式的相对能量要低得多。这表明,随着突出物从部分浸没变为全半球配置,流场现象会发生转变。对这种所谓的“模式切换”的进一步研究是本文介绍的工作重点。这项研究主要依赖模态分析来确定炮塔和尾流表面压力场之间的相关性。研究发现,部分半球周围的表面压力场波动主要受尾流影响,而炮塔本身的流体结构影响很小。对于半球和半球对圆柱的配置,对称和反对称非稳定分离成为最大的影响,并与尾流波动相结合。
我们研究了一个量子开关,该量子开关可为连接到它的多组用户创建共享的端到端纠缠量子状态。每个用户都通过光学链接连接到交换机,在每个时间段中生成了具有某些概率的两个时间段的双方钟形纠缠状态,然后交换机合并链接的链接以创建用户端到端的纠缠。链接的纠缠的一个固定位置存储在交换机上,纠缠的另一个量子存储在与链接相对应的用户中。假设一个时间段之后的链接纠缠的词汇位,我们表征了容量区域,该链接区域定义为端到端纠缠的请求率集,该端到端纠缠率是为了稳定开关的调度策略。我们提出了最大重量调度策略,并表明它可以稳定在容量区域的所有到达率的转换。我们还提供数值结果来支持我们的分析。
Dimensions,2022年6月20日至25日,希腊科孚岛。所有不断变化的城市会议都受到了学术社区世界的欢迎,通常吸引来自50多个国家的300多个主持人 - 希腊和欧洲,美国和加拿大,拉丁美洲,中东和北非,亚洲,远东和大洋洲。在此基础上,我们认为,尽管大流行危机,能源危机和乌克兰战争的困难条件,但第五个变化的城市会议也将是一项成功的学术活动。今年,已经提交了来自希腊和世界其他32个国家的400个摘要,而13个特别会议已由杰出学者预先组织。此外,来自国外学者的贡献相对较高的比例(约40%)表明了会议的国际特征。第5个变化的城市会议强调了由Covid '19大流行造成的城市的转变;主要主题是“使我们的城市在大流行时期有弹性”。它还突出了城市中遗产管理的问题,以验证与历史系爱奥尼亚大学的会议共同组织。学术社区对第5次CC会议的强烈兴趣,但在艰难的全球条件下,我们可以在两年内在另一个希腊岛上组织第六次不断变化的城市会议的想法。我要首先要感谢组织委员会,主题演讲者和国际科学委员会成员,他们热情地支持了本次会议的学术组织。我特别要感谢科学委员会的那些同事,他们在本次会议上也预先组织了特别会议。我要感谢所有在许多方面支持这次会议的学术和州组织:塞萨利大学;会议主持的爱奥尼亚大学;希腊环境与能源部 - 绿色基金;希腊海事事务部和孤立政策,以寻求其宙斯盾和财政支持。
通过成人大脑视网膜定位映射评估新一代可穿戴高密度弥散光学断层扫描 (HD-DOT) 技术 Ernesto E. Vidal-Rosas a、Hubin Zhao a,b、Reuben Nixon-Hill c,d、Greg Smith c、Luke Dunne d、Samuel Powell c,e、Robert J. Cooper a 和 Nicholas L. Everdell ca DOT-HUB,BORL,伦敦大学学院医学物理和生物医学工程系,伦敦,WC1E 6BT,英国 b 格拉斯哥大学詹姆斯瓦特工程学院,格拉斯哥,G12 8QQ,英国 c Gowerlabs Ltd.,伦敦,英国 d 伦敦帝国理工学院数学系,伦敦,SW7 2BU,英国 e 诺丁汉大学电气与电子工程系,诺丁汉,NG7 2RD,英国 ernesto.vidal@ucl.ac.uk摘要:我们通过复制一系列经典的视觉刺激范例研究了新型 HD-DOT 系统的性能。血液动力学反应函数和皮质激活图复制了使用更大的基于光纤的系统获得的结果。1. 简介
合成孔径雷达是一种众所周知的遥感应用技术,具有即使在夜间或有云层覆盖的情况下也能不间断成像等巨大优势。然而,星载 SAR 传感器面临着成本和尺寸等重大挑战,这是其适用于未来低地球观测应用星座的障碍之一。SAR 传感器并不紧凑,需要大型或中型卫星,而这些卫星的成本高达数亿美元。为了解决这些挑战,最近启动的由欧盟委员会资助的 SPACEBEAM 项目旨在开发一种新颖的 SAR 接收扫描方法,利用混合集成光学波束形成网络 (iOBFN)。所提出的光子解决方案的紧凑性和频率灵活性符合未来低地球轨道卫星星座在尺寸、重量、功耗和成本 (SWaP-C) 方面的要求。
相变的材料由于其急剧依赖于温度的特性而有希望,并且在光学开关和传感技术中具有很高的潜力。在此类材料中,二氧化钒(VO 2)是最实用的,因为其过渡温度接近室温。基于VO 2的基于电阻率的基于电阻率的较大温度系数来检测红外辐射。但是,为了达到较大的灵敏度,活跃的辐射吸收区域必须足够大,以允许VO 2吸收的入射辐射的足够温度积累,从而需要大的像素尺寸并降低降压测定量测量的空间分辨率。此外,在大多数应用程序中,VO 2材料的吸收未针对特定频段进行优化。另一方面,可以对等离激元纳米构型进行调整和设计,以选择性,有效地吸收入射辐射的特定带,以用于局部加热和热成像。在这项工作中,我们建议将血浆纳米结构与vo 2纳米线结合在一起,以扩大由于热变化而导致阻抗变化的斜率,以达到更高的敏感性。我们通过提出的检测器对中红外电磁辐射吸收的数值分析显示,该检测器显示等离子吸收剂接近完美的吸收。此外,由于底物在热分布中起着很大的作用,预计热堆积和纳米线抗性变化是不同的底物。我们还讨论了拟议设备上VO 2纳米线的制造。我们通过我们的新型降低测量器显示出高灵敏度和超低噪声等效温度差异(NEDT)。
The H2020-SPACE-ORIONAS Project “Lasercom-on-chip” for High-speed Satellite Constellation Interconnectivity A. Osman a , I. Sourikopoulos a , G. Winzer b , L. Zimmermann b , A. Maho c , M. Faugeron c , M. Sotom c , F. Caccavale g , A. Serrano Rodrigo h , M. Chiesa h , D. Rotta h ,G。B. Preve I,J。Edmunds D,M。Welch D,S。Kehayas D,W。Dorward J,F。Duport E,R。Costa F,D。Mesquita F和L. Stampoulidis A Leo Space Photonics R&D,Lefkippos Tech。公园,27 Neapoleos Str。,Ag。Paraskevi,15341,雅典,希腊B IHP GmbH,法兰克福(Oder),德国C Thales Alenia Space,26 AV。J-F Champollion,31037 Toulouse Cedex 1,法国D Gooch和Housego,Broomhill Way,Torquay,Torquay,Devon,Devon,TQ2 7QL,英国E IIII-V LAB,“ NOKIA BELL LABS”的联合实验室,“ NOKIA BELL LABS”,“ THALES REANCESS READIODS READICY
ZnMgO 固溶体体系之所以受到关注,是因为通过改变其成分可以调整许多重要的物理特性。该合金体系在室温下覆盖了直接带隙 3.36 eV(ZnO)和 7.8 eV(MgO)之间的宽紫外 (UV) 光谱范围,因此对短波长光学应用非常有吸引力,例如紫外探测器 [1-3] 和光发射器 [4-6]。Zn 1-x Mg x O 体系 [7,8] 通过调整体系中的成分(x 参数值),可以模拟宽光谱范围内的光学、发光和光电特性。通过改变成分,可以生产用于短波长 UV-A(320-400 nm)、UV-B(280-320 nm)和 UV-C(200-280 nm)辐射的装置 [9,10]。这些材料的纳米结构化,特别是纳米结构薄膜的生产,是模拟特定性能的另一个元素。各种技术已用于制备 ZnMgO 薄膜,如脉冲激光沉积 (PLD) [11]、等离子体增强原子层沉积 (PE-ALD) [12]、热液 [13]、化学浴沉积 (CBD) [14]、射频等离子体辅助分子束外延 (RF-MBE) [15-18]、DC [19, 20] 和 RF [21-23] 磁控溅射、化学气相沉积 (CVD) [24]、金属有机化学气相沉积 (MOCVD) [25, 26]、气溶胶沉积 [27-31] 和溶胶-凝胶旋涂 [30, 32-35]。气溶胶沉积法具有易于控制和处理化学品和基材以及对化学计量具有出色控制的优点。由于采用非真空设备、低温处理、低缺陷密度和低环境影响,该方法适合于以更快的速度和低成本制备高质量大面积薄膜。该方法可以在相当短的时间内沉积薄膜,易于掺杂,并制备具有良好电学和光学性质的均匀薄膜。
H2020空间 - 苏迪亚山脉项目:光子数字和类似物的空间级光电极接口,非常高的卫星有效载荷I. Sourikopoulos,L.Spampoulidis A,S。Giannakopoulos A,S.Giannakopoulos A,H,H,H,H,H。 C,G。Bouisset C,N。Venet C,M。Sotom C,M。Irion D,F。Schaub D,J。Barbero E,D。Lopez E,R。G. Walker F,Y.公园,27 Neapoleos Str。,Ag。Paraskevi,15341,雅典,希腊B IHP -Leibniz -institutFür创新的Mikroelelektronik,Im Technologiepark,25,15236 Frankfurt(Oder),德国C Thales Chales c Thales Alenia Alenia Space,26 Av。J -f Champolion,31037 Toulouse Cedex 1,法国D Albis Optoelectronics AG,Moosstrasse 2A,8803 Rueschlikon,瑞士英国54号贝恩广场的Alter Technology UK,苏格兰,苏格兰7DQ Livingston,Microtechnology and Nanoscience系,Chalmers Technology University of Gothenburg,瑞典