先进科学技术研究组织,日本横滨 基金会物理学研究中心 (FoPRC),意大利科森扎。 电子邮件:takaaki.mushya@gmail.com 通讯作者详细信息:Takaaki Musha;takaaki.mushya@gmail.com 摘要 已经开发出几种空间推进方法,包括实用的和假设的,每种方法都有其缺点和优点。本文讨论了通过电重力推动卫星的可能性。通过理论计算,这种推进方法可以产生足够的力来控制卫星的轨道。它只使用太阳能电池板产生的电能,卫星可以永久绕地球运行并在太阳附近的任何轨道上运行。 关键词:空间推进;卫星;电重力;比菲尔德-布朗效应 介绍 所有航天器都需要一种推进方法。已经开发出几种空间推进方法,包括实用的和假设的,每种方法都有其缺点和优点。卫星首次发射到预定轨道需要使用常规液体或固体火箭发动机,并具备足够的推进力以克服地球大气层并达到稳定轨道所需的高速度。行星际航天器可能需要这种强大的常规火箭发动机,但也可以依靠功率较小但持续时间较长、ISP 较高的发动机,如离子推进器或霍尔效应推进器。卫星即使进入稳定轨道,也需要可靠的长时间推进方法才能保持功能。即使卫星在轨道上,它也会受到稀薄大气层的阻力和其他力的影响,这些力会随着时间的推移降低轨道。因此,卫星必须能够对其轨道进行微小修正以保持轨道,这称为轨道站保持 [1]。此外,卫星可能需要能够不时从一个轨道转移到另一个轨道 [2],能够保持相对于地球表面、太阳或其他感兴趣的天文物体的特定姿态 [3],并且由于部件故障或其他原因,甚至可能需要以安全和可控的方式脱离轨道。在大多数情况下,当卫星执行轨道调整的推进系统耗尽或无法再产生推进力时,卫星执行其设计任务的能力就结束了,其使用寿命也结束了。目前,卫星通常只使用较小版本的化学火箭发动机或电阻喷射火箭进行推进。有些卫星确实使用电动动量轮进行姿态控制,但由于运动部件的存在,这些动量轮容易发生故障,并且它们可以执行的校正范围有限。最近,卫星开始使用电力推进,例如离子推进器来保持位置并调整轨道,但这种推进器虽然是电力驱动的,他们的供应仍然有限
高级科学技术研究组织,横滨,日本物理研究中心基金会(FOPRC),意大利科森扎。电子邮件:takaaki.mushya@gmail.com通讯作者详细信息:Takaaki Musha; takaaki.mushya@gmail.com摘要务实和假设的几种太空推进方法都有自己的缺点和优势。 在本文中,讨论了通过电载力推动卫星的可能性。 通过理论计算,这种推进方法可以产生足够的力来控制卫星的轨道。 它仅使用使用太阳能电池板产生的电能,卫星可以永久绕地球和太阳附近的任何轨道传播。 关键字:空间推进;卫星;电气; Biefeld-Brown效应引入所有航天器都需要一种推进方法。 已经开发了几种务实的和假设的空间推进方法,每个方法都有自己的缺点和优势。 最初向所需轨道发射卫星需要具有足够推进能力的常规液体或固体驱动的火箭发动机来克服地球大气层并达到稳定轨道所需的高速度。 星际航天器可能需要如此强大的传统火箭发动机,但也可以依靠功率较小但持续时间较长,较高的ISP发动机,例如离子推进器或霍尔效应推进器。 卫星,即使在稳定的轨道中一次,也需要一种可靠的长时间推进方法才能保持功能。电子邮件:takaaki.mushya@gmail.com通讯作者详细信息:Takaaki Musha; takaaki.mushya@gmail.com摘要务实和假设的几种太空推进方法都有自己的缺点和优势。在本文中,讨论了通过电载力推动卫星的可能性。通过理论计算,这种推进方法可以产生足够的力来控制卫星的轨道。它仅使用使用太阳能电池板产生的电能,卫星可以永久绕地球和太阳附近的任何轨道传播。关键字:空间推进;卫星;电气; Biefeld-Brown效应引入所有航天器都需要一种推进方法。已经开发了几种务实的和假设的空间推进方法,每个方法都有自己的缺点和优势。最初向所需轨道发射卫星需要具有足够推进能力的常规液体或固体驱动的火箭发动机来克服地球大气层并达到稳定轨道所需的高速度。星际航天器可能需要如此强大的传统火箭发动机,但也可以依靠功率较小但持续时间较长,较高的ISP发动机,例如离子推进器或霍尔效应推进器。卫星,即使在稳定的轨道中一次,也需要一种可靠的长时间推进方法才能保持功能。即使卫星在轨道上,也可能会从薄的气氛和其他力量中拖动,这些力会随着时间的流逝而降解轨道。因此,卫星必须能够对其轨道进行小校正以维护轨道,称为轨道站保持[1]。此外,卫星可能需要不时将一个轨道转移到另一个轨道[2],能够在地球表面,太阳或可能的其他感兴趣的天文学对象[3]中保持特定的态度[3],并且由于组件故障或其他原因甚至可能需要以安全和受控的方式被解除。在大多数情况下,卫星执行所设计的任务的能力已经结束,其用途寿命已经结束,当它允许其对其轨道进行此类调整的推进系统已经耗尽或不再产生推进。目前,卫星通常只会使用较小版本的化学火箭发动机或抵抗火箭的推进。有些人确实使用电动动量轮进行态度控制,但是由于运动部件而导致的失败,并且在可以执行的校正程度上有限。最近,卫星已经开始使用电动推进,例如离子推进器来保持和调节轨道,但是尽管电力电力,但此类推进器仍然有限地供应其
首先,它可以实现无声移动性。沉默的移动性是一种长期以来的属性,将增加所有地层中的致命性和生存能力。想象一下一个装有轻型侦察车的机动车辆部队,该车辆几乎未被发现。这个 - 结合延长范围和持续时间 - 对未来骑兵中队的整体有效性产生了巨大影响。其次,电气化将延长无声手表的持续时间,或者在所有关键系统供电并关闭发动机的情况下坐在隐藏位置的能力。通过提高电池密度,功率共享以及生产和优先级功率的能力,电气化车辆在电源管理方面将远远超过当前机队。第三,电动车辆将大大减少车辆产生的热特征,从而降低对抗性检测能力。可见和声学检测的减少将大大增加惊喜的要素。可见和声学检测的减少将大大增加惊喜的要素。
基于参考文献:•EK,K。,“添加剂制成的金属”,科学硕士论文,KTH皇家理工学院(2014年)。•Gradl,P。,Brandsmeier,W。,Calvert,M。等,“添加剂制造概述:推进应用程序,设计和经验教训。演示,” M17-6434。12月1日(2017年)。•ASTM委员会F42关于添加剂制造技术。添加剂制造技术的标准术语ASTM标准:F2792-12A。(2012)。•Gradl,P.R.,Greene,S.E.,Protz,C.,Bullard,B.,Buzzell,J.,Garcia,C.,Wood,J.,Osborne,R.,Hulka,J。和Cooper,K.G.,2018。液体火箭发动机燃烧设备的添加剂制造:过程开发和热火测试结果的摘要。在2018年联合推进会议上(第4625页)。7
课程方法——本课程将包括 20 个主题领域课程。主题 1 至 5、9 和 17 将以讲师讲授的形式进行。其余 13 个主题将由学生主导演讲和讨论。几名学生将准备演讲材料并主持每个主题讨论。典型的课堂课程将包括两到三名学生的演讲,描述他们对与该课程主题领域相关的特定主题的研究结果。所有学生都需要在 1 月 8 日星期三 3:00 之前以所有 13 个主题领域的排名顺序的形式向 Cantwell 教授提交他们的偏好。最终的主题领域作业将于 1 月 9 日在课堂上提供。在 1 月 14 日讲座之前,学生必须提交一段提案,确定他们计划在指定主题领域研究和展示的主题。主题可以是讲师准备的建议主题列表,也可以由学生提出自己的主题。请注意,第一次学生主导的演讲是在 1 月 23 日。演讲后的一周内,每位学生将提交一份大约 10 页的个人书面报告,内容涉及他们的主题领域/主题。报告应采用提交给 AIAA 推进和能源论坛(前身为联合推进会议)的论文格式。请参阅 http://www.aiaa.org/events-learning/events/Technical-Presenter-Resources 报名参加三个学分的学生将被分配四个主题(四份书面报告)。报名参加一个学分的学生将被分配两个主题(两份书面报告)。讲师将在课程开始时提供每节课的资源材料清单,但学生可以根据需要在其演讲中加入其他资源。所有学生都应熟悉每节课的主题,并在课程期间为课堂讨论提供意见。评分——最终课程成绩将由三个权重大致相等的因素决定:1)学生主导的每个主题领域/主题所准备材料的质量;2)学生报告的质量和完整性;3)学生在课堂上参与课程所涵盖的所有不同主题领域讨论的质量。资源——本课程的资源可在我的网站 http://web.stanford.edu/~cantwell/ 上找到,其中包括 AA283 和 AA103 的课程材料。AA284 课程材料文件夹中有一个文件夹,其中包含 Karabeyoglu 教授的 AA 284 讲座。AA284A 课程材料文件夹中还提供了讲座和许多与 AA284A 特定主题领域相关的参考资料。
i特此声明,本文档中的所有信息均已根据学术规则和道德行为获得并介绍。我还声明,根据这些规则和行为的要求,我已经完全引用并引用了这项工作不是原始的所有材料和结果。
摘要 光束动力推进是一种利用高能粒子束驱动航天器的空间推进系统。这项创新技术有望为未来的太空任务提供高比冲和高推力能力。光束动力推进的关键部件包括粒子加速器、传动系统和航天器推进装置。该系统通过产生和引导高能粒子束(例如电子或离子)朝向推进装置来运行。光束与推进装置的相互作用产生推力,推动航天器前进。光束动力推进具有多种优势,包括高比冲、高推力、低质量以及在各种空间环境中运行的能力。空间技术的快速进步提高了商业和私营部门的成功率,但推进技术难以克服霍曼效应。研究重点是用于深空任务的无碳电力和核技术。应对持续的挑战评论文章强调了太空探索和行星际运输的好处。关键词:光束动力推进、高能粒子、比冲、推力、粒子加速器、传动系统、航天器推进装置。
前言 这是一系列研究的第五篇 — 这些历史著作由于各种原因未发表。然而,其中包含的材料被认为对空军成员和学者具有持久的价值。这些研究仅进行了最低限度的编辑,并以限量版印刷,以提供给可能觉得有用的少数读者。我们邀请读者向空军历史和博物馆计划提供反馈。 从 1946 年开始,陆军航空队 (AAF) 首次赞助了一项关于核能推进 (NEPA) 项目的研究。在原子能委员会 (AEC) 和麻省理工学院 (MIT) 审查后,这项工作在接下来的几年里取得了进展。由此产生了 USAF-AEC 联合飞机核推进 (ANP) 计划。政府实验室和工业公司进行了十年的研究,直到 1961 年肯尼迪政府取消了这项工作。然而,在 AEC 的指导下,在高温材料和高性能反应堆方面进行了一些有用的后续工作。此外,一些开发工作仍在太空核计划下继续进行。《飞机核推进》是美国政府开发核动力飞机计划的一份全面、非机密、带注释的参考书目。合同作者 Bernard J. Snyder 博士是位于马里兰州波托马克的能源与管理顾问公司的总裁。他拥有近四十年的经验,是这项任务的唯一合格人选