简介:曲妥珠单抗emtansine(T-DM1)和曲妥珠单抗Deruxtecan(T-DXD,以前为DS-8201A),人表皮生长因子受体2(HER2)含量为抗体抗体抗体抗体 - 毒剂 - drog-drug congugate(ADC),通常用于转移性乳腺癌。但是,他们的实际安全性尚未得到充分比较。目标:我们旨在研究美国食品和药物管理局不利事件报告系统(FAERS)报告的T-DM1和T-DXD的不良事件(AE)。方法:从Faers数据(2004年1月至2023年6月)中,搜索了所有指示,作为主要可疑药物的T-DM1和T-DXD。通过报告比值比(ROR)和比例报告比率(PRR)进行了不成比例分析。通过单变量和多元后勤回归分析,在不同暴露因子下与T-DM1和T-DXD相关的致命AE的几率(OR)。结果:3723和2045 TM1和T-DXD的报告已提交给FAERS。最后,系统地分析了TM1和T-DXD的94和61个重要信号。T-DM1的频率最高和最强信号强度的有效AE分别降低(n = 108)和肝肺综合征(ROR = 680.42)。间质肺疾病(n = 262,ROR = 82.55)和肺炎(n = 89,ROR = 48.34)显示出T-DXD的高频和强信号强度。每个SOC系统中AE的比例都不同。t-dm1在神经系统,肌肉骨骼系统,肝胆系统,眼部系统,心脏系统和血液系统系统中具有更大比例的有效AE(P <0.05)。t-DXD在皮肤疾病,呼吸系统,侵扰,通用系统和胃肠道系统中具有更大比例的有效AE(P <0.05)。此外,与T-DM1相比,四个系统中致命AES的分析表明,T-DXD在血液学和呼吸系统中表现出明显更高的致命结局比例。相反,T-DM1在肝动物系统中的致命结果比例明显更高。T-DM1和T-DXD均未在心脏系统中表现出很高的死亡率。逻辑回归分析表明,TM1和T-DXD的高龄(≥65岁)和男性性别被确定为致命AES的独立风险因素。此外,发现药物联合疗法,特别是使用CYP3A4抑制剂,是与T-DXD特别相关的致命AES的危险因素。结论:T-DXD和T-DM1的肝毒性的血液学和呼吸毒性表现出很高的致命结局。至关重要的是鉴定高风险因素并增强临床应用过程中AE的监测。
引言结核病 (TB) 仍然是一项严重的健康挑战,仅在 2021 年全球就造成约 150 万人死亡 (1)。结核分枝杆菌 (M . tuberculosis) 具有极强的人类适应性,通过尚不完全了解的免疫破坏机制在巨噬细胞内存活。肺巨噬细胞最初吞噬结核分枝杆菌会激活由种系编码的模式识别受体 (PRR) 组成的胞浆监视途径,导致 I 型干扰素 (IFN) 和促炎细胞因子产生增加、炎症小体活化和自噬 (2–4)。我们实验室和其他实验室的研究表明,结核分枝杆菌 DNA 和分枝杆菌衍生的环状二核苷酸可激活胞浆 DNA 传感途径 (5–8),从而驱动 I 型 IFN 的表达。虽然已经广泛研究了细胞浆病毒 RNA 在先天免疫感应中的作用,但细菌 RNA 对疾病发病机制的贡献尚不明确 (9)。最典型的 RIG-I 样受体 (RLR) 家族成员 RIG-I 和黑色素瘤分化因子 5 (MDA5) 包含一个中央 ATPase 含 DExD/H-box 解旋酶结构域和一个 C 末端阻遏物结构域,这两个结构域均参与 RNA 结合 (10, 11)。通过 RNA 结合激活后,2 个串联 caspase 激活和募集结构域 (CARD) 与衔接子线粒体抗病毒信号蛋白 (MAVS) 相互作用,介导 NF- κ B 和 IFN 调节因子 (IRF) 的诱导以及随后 IFN 刺激基因 (ISG) 的表达 (12–14)。尽管结构相似,RLR 检测的 RNA 种类往往不同,这些 RNA 种类往往具有病原体特异性,但不一定相互排斥 (11, 15)。越来越多的证据表明,RIG-I 在结核分枝杆菌感染的 I 型干扰素反应中起着非冗余作用 (16–18),它通过与特定的结核分枝杆菌 RNA 转录本结合,这些转录本利用分枝杆菌 ESX-1 分泌系统进入巨噬细胞胞质 (16)。我们最近发现,结核分枝杆菌 RNA 转录本能够通过与特定结核分枝杆菌 RNA 转录本结合,从而进入巨噬细胞胞质。
简介和变更摘要 本手册由 DoN ILA 指导小组制定和协调,该小组包括海军副助理部长(后勤)、海军作战部长(物资准备和后勤)、海军陆战队副司令(设施和后勤)、硬件系统司令部和海军供应系统司令部的代表。DoN ILA 指导小组负责本手册的内容和管理。欢迎手册用户将对手册和/或 ILA 流程的改进建议(包括:更改、更新、添加和删除)发送给其各自的系统司令部指导小组代表,以供将来考虑。本手册提供了详细指导,以促进对 ILS 规划、管理、控制、执行和资源的充分性进行全面评估。本手册还定义了初始作战能力 (IOC) 和全面作战能力 (FOC) 审查中使用的评估标准。本手册中的方法和清单旨在实施 SECNAVINST 5000.2 系列和 SECNAVINST 4105.1 系列的要求,强调舰队是采购过程的最终客户。SECNAVINST 5000.2 系列要求评估、开发和整合后勤支持策略,同时确保在系统 IOC 时提供短期后勤支持。从 IOC 开始,后勤支持应足以维持运营,达到能力开发文件/生产文件 (CDD/CPD) 规定的性能和可负担性水平。系统 FOC 应提供长期后勤支持,以最大限度地提高战备水平并最大限度地降低生命周期成本。根据 SECNAVINST 4105.1 系列“ILA 和认证要求”,各个项目执行官 (PEO) 和系统司令部 (SYSCOM) 指挥官负责确保在里程碑 B、C 和全速生产 (FRP) 决策之前在所有 ACAT 项目中完成 ILA。他们还应确保在 IOC 和 FOC 之前审查 ILS 元素的状态。PEO 或 SYSCOM 指挥官(或指定代表)应在里程碑决策之前认证 ILS 计划的状态,并根据正式书面报告中记录的 ILA 结果进行认证。因此,评估之间的时间间隔不应超过五年。对于里程碑 B 和里程碑 C 之间的时间间隔可能超过十年的船舶项目来说尤其如此。虽然评估过程旨在向里程碑决策机构 (MDA) 提供意见,但该过程的最终结果是不断提高可支持性并降低交付给舰队的设备和武器系统的成本。如果里程碑之间的时间间隔超过五年,则应在五年之前进行 ILA,并与主要系统工程评审(例如关键设计评审或生产准备评审 (PRR))同时进行。
基因编辑技术的进步。它可以通过识别细菌免疫系统并破坏入侵病原体基因,用于植物防御机制以抵御病原体的攻击。通过 CRISPR/Cas9 整合在植物育种方面的进步有助于开发包括对细菌和病毒疾病的遗传抗性的品种。如果在 F1 代中分离出 Cas9/sgRNA 转基因,未来的作物世代可以获得 CRISPR/Cas9 介导的转基因抗性。Cas9/sgRNA 转基因分离使 CRISPR/Cas9 可安全用于植物育种。尽管 CRISPR/Cas9 已被证明是彻底改变植物育种和开发各种抗病品种的绝佳工具,但它对许多植物生理过程的影响仍有待彻底研究。关键词:CRISPR/Cas9;基因编辑;基因组;植物育种;抗性育种。1. 介绍一个主要的挑战是保护作物品种免受当前病虫害的侵害,并改良作物品种以提高产量。抗病作物品种的短缺是农民遭受农业减产的主要原因。为了培育抗病作物并确保粮食安全,培育抗病、抗虫和高产作物大有裨益 [31]。抗性育种利用包括转基因植物基因组编辑在内的各种尖端分子方法,旨在通过提高作物对病虫害的抵抗力来改良作物。借助转基因技术,育种者可以进行物种间杂交,将来自无关植物和其他生物的基因添加到作物中 [31]。为了满足营养需求,不断增长的人口(由于全球人口增长,预计到 2050 年将达到 98 亿)必须生产过量的食物 [4]。植物病原体包括细菌、病毒、真菌和寄生虫,威胁着全球粮食安全 [2,30]。为了提高作物产量并满足世界粮食需求,提高植物的抗性非常重要 [11]。众所周知,植物和疾病之间总是在不断地相互保护 [16,42]。为了抵御感染,植物进化出了“模板触发免疫 (PTI)”和“效应物触发免疫 (ETI)”[17]。PTI 通常由“病原体相关分子模式 (PAMP)”通过“模式识别受体 (PRR)”快速激活 [32,25]。抗性育种在很大程度上依赖于遗传多样性。利用抗性育种理念的一个重要组成部分是开发抗性并为有害基因增加遗传多样性 [43]。这些发现导致了各种基因编辑方法的使用,以创造遗传变异。CRISPR(成簇的规则间隔回文重复序列)/Cas9(CRISPR 相关蛋白)细菌免疫
演员:劳伦斯·奥托·赫维森,《Homtet》,J. Arthur Ronk-fyo Cities Film,Universol-lnlernaliono!(斯里菲什)演员(编剧):沃尔特·胡森,《Fressure of Sierrtr llodre》,华纳兄弟。女演员:JANE WYTAN,《Johnny Belindo》,沃纳兄弟电影公司。 配角:CLAIRE TREVOR,《Key Lorgo》,沃纳兄弟电影公司。 广告指导(黑白):ROGER K. RUSE,“Homlet”,J. Arthur Ronk-fwo Cities Film,Universol-lnlernolionol(英国) 导演(彩色):HEIN HECKROfH,“fhe Red Shoes”,J. Arlhur Ronk-Archers,Eogle-Lion(英国) 精选装饰(黑白):CARILEN DILLON,“Homlet”,J. Arthur Ronk-fwo Cities Film,Universol-lnlernolionol(爱尔兰) 精选装饰(彩色):ARTHUR IAWSON,“fhe Red Shoes”,J. Arthur Ronk-Arthers, Eogle-Lion(英国) 摄影(黑白):Wilson DANIELS,“Fhe Noked City”,Lork Hellinger Productions,Inc.,Universal International 电影(彩色):JOSEPH VALENNE、Wilson V. SKALL 和 WINION HOGH,“Joon ol A?”,“Sierro Pictures,Inc.,RKO Ritchie 服装设计(黑白):ROGER X. FURSE,“Hnmlet”,J. Arlhur Ritchie-Two Cities Film,Universal International(英国) 服装设计(彩色):DORofHY JEAKINS 和 KARINSKA,“Joon of Arc”,Sierro Pictures,Inc.,RKO Ritchie 导演:JOHN HUSTON,“freosure of Arc”,Sierrq Pictures,Inc.,RKO tlodre,” Worner Bros. 电影剪辑: PAUL WHERWAX,“fhe Noked Ciry”,ilark Hellinger Produclions,lnt.,Universal Inlernotionol 影片(配乐影片): JOHNNY GREEN 和 ROGER EDENS,“Eosler Porade”,MG-II 影片(爱情或喜剧影片配乐): BRTEAN EASDAIE,“fhe Red Shoes”,J. Arthur Rank-Archers,Eogle.Lion(英国) 影片(原创歌曲): “BUIfONS AND BOWS” 来自“fhe Polefoce”,Poromounl.曲作者和歌词作者:Joy Livingston 和 Roy Evons 最佳影片:J. Arthur Ronk,两城电影公司,环球国际(英国)短片(动画片),“IHE IITTLE ORPHAN”,导演:Fred Quimby,制片人短片(单卷):“SYILPHONY OF A ClfY”,20 世纪福克斯,Edmund H. Ieek,制片人长片(双卷):“SEAL ISLAND”,沃尔特迪斯尼,雷电华电影公司,沃尔特迪斯尼,制片人原创录音:FOIL AS I. ILOUTON,“FHE SNOKE PRR”,20 世纪福克斯特别观众:PAUI EAGLER、J. IITCLLAN JOHNSON、USSELI SHEARMAN 和 CLARENCE SLIFER,视觉;查尔斯·费因安和杰伊斯·G·西瓦里,有声读物,“珍妮的肖像”,塞尼克工作室 编剧(编剧):约翰·胡森,“塞罗拉的宝藏”,沃纳兄弟 编剧(电影故事):理查德·施魏策尔和大卫·韦奇西尔,“系列”,派克森电影公司,瑞士
自2019年底以来,人类一直面临着一种新的大型,单链的RNA病毒的出现,称为严重急性呼吸道综合症冠状病毒2(SARS-COV-2),该病毒(SARS-COV-2)导致呼吸道疾病,其具有实质性的发病率和死亡率,称为冠状病毒疾病19(Covid-19)。这个大流行毫不前端动员了全球研究人员和临床医生的努力,以便更好地了解控制SARS-COV-2感染致病性的免疫机制。通常,感染与两个不同的临床特征有关。尽管在大多数情况下(〜90%),感染是无症状的或与轻度症状有关的,但有些患者(约10%)患有更严重的疾病,并患有急性呼吸窘迫综合征,并具有全身性肿瘤,细胞因子风暴,组织损伤,血栓造成的,血栓栓塞并发症以及/或心脏损伤,在约1-2%的情况下可能是致命的。宿主免疫反应的先天和适应性臂对赋予疾病的保护或敏感性至关重要,但SARS-COV-2感染的免疫学特征仍然很少了解。在我们的特刊中,“ SARS-COV-2先天性和适应性免疫反应”,我们提出了13篇文章的汇编,其中包括4个评论和9条来自几个学科的原始研究文章,包括免疫学,病毒学,生物化学和临床数据,这些数据涉及抗SARS-COV-2 SARS-COV-COV-COV-COV-COV-COV-2先天和自适应免疫反应的各个方面。,干扰素反应在解决病毒感染中起着重要作用。SARS-COV-2及其变体与干扰素响应的相互作用是一个核心问题。宿主先天免疫反应针对SARS-COV-2感染是由专用的先天免疫传感器集体被称为模式识别受体(PRRS)的专用组合的特定病毒特征引发的,这触发了专门用于在病原体消除病原体的基因的激活;这些基因通常编码细胞因子,干扰素和趋化因子。在[1]中研究了干扰素反应的诱导及其控制SARS-COV-2复制,尤其是Omicron变体的能力。在[2,3]中回顾了冠状动脉和病毒逃避策略的先天免疫感应机制的不同方面。在[4]中回顾了在上呼吸道(SARS-COV-2的主要入口部位)中发生的至关重要的免疫反应。在参与SARS-COV-2检测的不同PRR之间,Planes等。呈现SARS-COV-2包膜(E)蛋白和TLR2之间相互作用的分子表征[5]。除了TLR2途径外,SARS-COV-2感染还调节了各种细胞基因的表达,在炎症和组织/器官功能障碍中具有重要意义,这在[6]中探讨了。Zanchettin等人的目的是表征Covid-19的新遗传生物标志物。检查了屈服于严重的Covid-19的Covid-19患者中的基因多态性。作者发现了与巨噬细胞激活综合征(MAS)途径其他炎症性疾病中已经描述的等位基因变体的潜在关联[7]。抗SARS-COV-2先天免疫反应的其他重要参与者是含有天然杀手(NK)细胞的细胞毒性细胞,该细胞消除了受感染的细胞并与各种
脚和口径疾病(FMD)是一种高度传染性的牲畜病毒疾病,会造成严重的经济损失。FMD病毒(FMDV)属于Picornaviridae和Aphthovirus家族,分为七个血清型(1,2)。七个FMDV血清型之间的交叉保护无法使其预防和控制复杂化(3,4)。fmd通常由症状(例如高烧,口腔中的水泡以及粘性或泡沫状唾液的过度分泌)来鉴定(5)。此外,成年动物可以体重减轻,几个月内无法恢复,雄性睾丸肿胀,并显着减少牛奶的产量。尽管几只感染的动物仍然无症状载体,但它们可以携带病毒并将其传播给其他动物(6,7)。许多国家建议进行疫苗接种,以防止FMD急性扩散;但是,可用的疫苗有几个局限性,例如低抗体滴度和注射部位的局部反应。因此,我们研究了有效的佐剂,以增强疫苗的细胞和体液免疫反应并解决安全问题。韩国属于FMDV血清型池1,主要暴露于FMDV血清型O,A和亚洲1(8)。自2000年以来,韩国的FMD爆发主要归因于血清型O和A。的确,从2017年到2023年,FMD最近发生的FMD爆发是由O型(ME-SA拓扑)和A型(A/ASIA/SEA-97拓扑型)引起的。因此,在这项研究中,使用FMD抗原O PA2(ME-SA拓扑型)和YC(A/Asia/Sea-97拓扑型)制备了测试疫苗。佐剂与特定的疫苗抗原结合使用时会增强和延长免疫反应(9);因此,要开发一种新型的FMD疫苗,必须对各种佐剂进行研究。大多数FMD疫苗都涉及使用灭活的病毒抗原。矿物油基佐剂和氢氧化铝[AL(OH)3],有或没有皂苷,已用作FMD疫苗的传统佐剂,以改善灭活病毒抗原的稳定性和递送(10-13)。已经报道了含有粗皂苷的FMD疫苗,包括在疫苗接种位点进行溶血并引起短寿命抗体反应。因此,比皂苷更安全并可以诱导强烈的免疫反应的Quil-A用作FMD疫苗辅助(14)。尽管有改善的FMD疫苗,但建议重复进行疫苗接种,这是由于低和短寿命的抗体滴度。重复的疫苗接种可能会在注射部位引起局部副作用,这是由于FMD疫苗中包含的矿物油基辅助剂(11、13、15-17)。因此,当前在FMD疫苗中使用的佐剂,特定的免疫刺激性组合需要改进以增强效率和安全性。在先前的研究中,我们确认用树突状细胞(DC)相关的C型凝集素-2(Dectin-2)激动剂诱导的PBMC增殖(18)处理猪外周血单核细胞(PBMC)(DC)相关的C型凝集素-2(DC)相关的C-Type凝集素2(DC)。因此,我们假设Dectin-2激活引起了猪中强大的免疫反应。基于先前的研究,我们使用了Dectin-2激动剂D-Galacto-D-Mannan作为本研究中新型FMD疫苗的辅助。dectin-2是包含