为反病原体侵袭,植物已经进化了大量免疫受体,包括膜居民模式识别受体(PRR)和细胞内核苷酸结合和富含亮氨酸的重复受体(NLR)。在过去的几年中,我们对PRR和NLR信号传导机制的了解显着扩展。植物NLR响应病原体效应子形成称为抗性的多蛋白络合物,而NLR抗性体介导的信号传导会在Ca 2+可渗透的通道上收敛。Ca 2+ - 对PRR信号很重要的可渗透通道也已被鉴定。这些发现突出了Ca 2+在触发植物免疫信号传导中的关键作用。在这篇综述中,我们首先讨论了非典型的NLR Ca 2+通道的结构和生化机制,然后总结了我们对免疫相关的Ca 2+可渗透通道及其在PRR和NLR信号中的作用的知识。我们还讨论了Ca 2+在PRR和NLR信号之间的复杂相互作用中的潜在作用。
树突状细胞(DC)通过识别通过模式识别受体(PRRS)识别保守的病原体相关分子模式(PAMP)和损伤相关的分子模式(PAM)(PRR),参与针对恶性细胞的免疫反应的引发和维持。根据最近的研究,肿瘤细胞衍生的DNA分子起作用,并由DCS中的DNA传感器识别。一旦通过DC中的传感器识别,这些DNA分子会触发多个信号级联反应,以促进各种细胞因子分泌,包括I型IFN,然后诱导DCS介导的抗肿瘤免疫。作为癌症治疗的潜在有吸引力的策略之一,针对DNA传感器的各种激动剂进行了广泛的探索,包括与其他癌症免疫疗法的组合或直接使用作为癌症疫苗的主要成分。此外,这篇评论突出了肿瘤衍生的DNA引发DCS激活的不同机制以及肿瘤微环境调节DCS的DNA感应以促进肿瘤免疫逃生的机制。还讨论了肿瘤疗法中化学疗法,放疗和检查点抑制剂对DC的DNA感应的贡献。最后,总结了利用靶向激动剂的DNA传感器的肿瘤疗法的最新临床进展。的确,在DC中更多地了解DNA感应将有助于更多地了解肿瘤免疫疗法,并提高癌症中DC靶向治疗的有效性。
自2019年底以来,人类一直面临着一种新的大型,单链的RNA病毒的出现,称为严重急性呼吸道综合症冠状病毒2(SARS-COV-2),该病毒(SARS-COV-2)导致呼吸道疾病,其具有实质性的发病率和死亡率,称为冠状病毒疾病19(Covid-19)。这个大流行毫不前端动员了全球研究人员和临床医生的努力,以便更好地了解控制SARS-COV-2感染致病性的免疫机制。通常,感染与两个不同的临床特征有关。尽管在大多数情况下(〜90%),感染是无症状的或与轻度症状有关的,但有些患者(约10%)患有更严重的疾病,并患有急性呼吸窘迫综合征,并具有全身性肿瘤,细胞因子风暴,组织损伤,血栓造成的,血栓栓塞并发症以及/或心脏损伤,在约1-2%的情况下可能是致命的。宿主免疫反应的先天和适应性臂对赋予疾病的保护或敏感性至关重要,但SARS-COV-2感染的免疫学特征仍然很少了解。在我们的特刊中,“ SARS-COV-2先天性和适应性免疫反应”,我们提出了13篇文章的汇编,其中包括4个评论和9条来自几个学科的原始研究文章,包括免疫学,病毒学,生物化学和临床数据,这些数据涉及抗SARS-COV-2 SARS-COV-COV-COV-COV-COV-COV-2先天和自适应免疫反应的各个方面。,干扰素反应在解决病毒感染中起着重要作用。SARS-COV-2及其变体与干扰素响应的相互作用是一个核心问题。宿主先天免疫反应针对SARS-COV-2感染是由专用的先天免疫传感器集体被称为模式识别受体(PRRS)的专用组合的特定病毒特征引发的,这触发了专门用于在病原体消除病原体的基因的激活;这些基因通常编码细胞因子,干扰素和趋化因子。在[1]中研究了干扰素反应的诱导及其控制SARS-COV-2复制,尤其是Omicron变体的能力。在[2,3]中回顾了冠状动脉和病毒逃避策略的先天免疫感应机制的不同方面。在[4]中回顾了在上呼吸道(SARS-COV-2的主要入口部位)中发生的至关重要的免疫反应。在参与SARS-COV-2检测的不同PRR之间,Planes等。呈现SARS-COV-2包膜(E)蛋白和TLR2之间相互作用的分子表征[5]。除了TLR2途径外,SARS-COV-2感染还调节了各种细胞基因的表达,在炎症和组织/器官功能障碍中具有重要意义,这在[6]中探讨了。Zanchettin等人的目的是表征Covid-19的新遗传生物标志物。检查了屈服于严重的Covid-19的Covid-19患者中的基因多态性。作者发现了与巨噬细胞激活综合征(MAS)途径其他炎症性疾病中已经描述的等位基因变体的潜在关联[7]。抗SARS-COV-2先天免疫反应的其他重要参与者是含有天然杀手(NK)细胞的细胞毒性细胞,该细胞消除了受感染的细胞并与各种
通量,活性氧的产生和有丝分裂原激活的蛋白激酶激活[1]。最近的研究表明,2受体系统的相互依赖性和相互增强[2,3]。基于其N末端结构域及其系统发育,NLR在盘绕型圈(CC)结构域,Toll-like/interleukin-1受体耐药性(TIR)结构域中被构成,对白粉病(CC R)的耐药性(CC R)域的耐药性包含NLR,含有NLR,含有AS CNLS,TONLS,the and cnls for and thls for and for and thls from thls&tnls for and。在拟南芥中(以下称为Arabidopsis),多个PRR和效应子传感NLR(某些CNL和所有测试的TNL)需要存在RNL,也称为Helper NLR,以激活全部免疫力[5,6]。rnls形成一个由2个亚家族组成的小而进化保守的进化枝,活化的抗耐药性1(ADR1)和N需求基因1(NRG1)家族,它们在血管植物的发散之前已有分离[4]。拟南芥基因组径流3 ADR1和2 NRG1全长基因需要完全免疫[7-9]。尽管RNL仅代表大多数被子植物中NLR基因库的一小部分[4,10],但对于植物而言,它们至关重要。在这里,我们重点介绍了RNL在免疫过程中的功能以及讨论RNL激活机制的最新发现。
摘要 软骨鱼类是理解脊椎动物进化的基础,但其基因组研究不足。我们报告了鲸鲨基因组的长读测序,以生成迄今为止最佳的无缝软骨鱼类基因组组装,其重叠群连续性高于所有其他软骨鱼类基因组,并研究了祖先基因家族、免疫和巨人症的脊椎动物基因组进化。我们发现,在有颌脊椎动物的起源处,基因家族数量大幅增加,而与基因组复制无关。我们研究了脊椎动物病原体识别受体 (PRR),它们是启动先天免疫防御的关键,并发现了基因家族进化的多种模式,表明有颌动物的适应性免疫并没有完全取代种系编码的 PRR 创新。我们还在鲸鲨中发现了一种新的 Toll 样受体 (TLR29) 和三个 NOD1 拷贝。我们发现,与其他脊椎动物相比,软骨鱼类和巨型脊椎动物的基因组替换率有所降低,但巨型脊椎动物的基因家族扩张率各不相同,这表明脊椎动物基因组中基因家族的替换率和扩张率是脱钩的。最后,我们发现,在巨型脊椎动物中扩张率发生变化的基因家族富含人类癌症相关基因,这与巨人症需要适应来抑制癌症相一致。
Background, Significance, Hypothesis: C. trachomatis (Ctr) is an obligate intracellular pathogen that employs several strategies to evade host immune responses while replicating within permissive cell types, such as epithelial cells.在保护性膜结合的液泡中被划分为隔离层被称为包含,被称为包含,以隔离衣原体病原体相关的分子模式(PAMP),并修饰其脂多糖(LPS)(LPS)通过各种病原体识别受体(PRR)来防止检测。病原体识别的新范式暗示了病原体诱导的误差(感染不忠),负责激活PRR。例如,释放细胞内病原体相关的分子模式(PAMP),例如核酸,环状二核苷酸,肽聚糖(PG)成分等。只有在细菌膜完整性因生化过程失调而损害时才会发生。我们提出转录失调可能是一种感染的形式,当表达不当时,某些蛋白质能够触发病原体识别。宿主 - 病原关系的一个有趣的方面是,在铁饥饿或氨基酸限制中遭受压力,这两个实体都会从两个实体中产生反应以改变权力平衡。在铁饥饿的情况下,同时影响宿主和病原体的铁饥饿,通过诱导代谢误差来削弱后者,并通过增强对这些病原体错误的认识来增强前者。
Alan 来自英国,拥有遗传学学士学位(利兹,1977 年)和分子生物学博士学位(爱丁堡,1980 年)。1987 年,他加入了全球最大的养猪公司 PIC 的母公司 Dalgety。在 1996 年加入 PIC 之前,Alan 参与过多个 PIC 项目,包括精液性别鉴定、开发猪的 DNA 标记以及快速检测精液中是否存在 PRRS 病毒。2000 年,Alan 搬到了加利福尼亚州伯克利,在那里他建立了新的 PIC 实验室,开展分子生物学(开创了猪的基因组选择)和胚胎技术研究。2005 年,PIC 被 Genus plc(一家英国养牛公司)收购后,Alan 将分子生物学实验室搬到了威斯康星州迪福雷斯特的 Genus/ABS 总部。在 Genus 任职期间,他与英国和美国顶尖大学建立并管理了合作项目,主要涉及基因组编辑和基于 DNA 测序的基因组选择。Alan 于 2017 年离开 Genus,但继续以顾问的身份与他们合作,管理他设立的英国合作项目。Alan 于 2019 年加入位于威斯康星州的 Genetic Visions,担任高级首席科学家,领导将 Illumina DNA 测序技术应用于牛精液质量控制。自 2012 年以来,Alan 一直担任英国知识转移网络动物部门咨询委员会主席,并在过去 15 年中担任过多个咨询委员会成员。Alan 发表了 50 多篇科学出版物,在他的职业生涯中见证了基因组学技术改变畜牧业的过程。
抽象背景:自然界中的植物或田间的农作物与包括细菌,真菌和病毒在内的多种有益或寄生生物相互作用。病毒非常专业,可以感染有限的宿主植物,在极端情况下导致宿主的全部入侵和患病的表型。对病毒的耐药性可以通过各种被动或主动机制介导,包括RNA - 沉默机制和先天免疫系统。主要文本:RNA沉淀机制可能会抑制病毒复制,而病毒成分可以引起先天免疫系统。成功进入植物细胞的病毒可以引起模式触发的免疫力(PTI),尽管尚未通过未知的机制。作为反辩护,病毒抑制了PTI。此外,可以通过细胞内免疫受体(耐药蛋白)检测病毒活力蛋白(AVR),以引起效应触发的免疫(ETI)。eti通常最终在局部编程的细胞死亡反应,高敏反应(HR)中,并伴随着有效的全身防御反应。在二分法中,RNA沉默和先天免疫被视为两种抗性机制。在这里,我们回顾了这两个调节系统之间的复杂联系和相似之处,这些系统统称为确保植物的健身和弹性。结论:转录水平上对免疫调节的详细理解为通过基于RNA的技术增强植物对病毒的抗性提供了新的机会。我们描述了宿主RNA介导的病毒抗性调节的主要例子。然而,大量使用RNA技术需要对RNA基因调节的分子机制进行透彻的了解。关键字:电阻,DSRNA,VAMP,PRRS,NLR,宽光谱抗性,RNA沉默
摘要 当前,SARS-CoV-2尤其是Omicron毒株肆虐全球,甚至与IAV共同感染人类,严重威胁人类公共卫生。目前尚未发现针对SARS-CoV-2的特效抗病毒药物。这需要更深入地了解SARS-CoV-2与宿主相互作用的分子机制,探索抗病毒药物靶点,为研发抗SARS-CoV-2药物提供理论基础。本文讨论了IAV,它已被广泛研究,有望为SARS-CoV-2研究提供除冠状病毒科成员之外最重要的参考价值。我们希望为病毒-宿主相互作用的研究建立理论体系。先前的研究表明,宿主PRR识别IAV或SARS-CoV-2的RNA,然后激活先天免疫信号通路,诱导宿主限制因子(如ISG)的表达,最终抑制病毒复制。同时,病毒也在转录、翻译、翻译后修饰和表观遗传水平上进化出各种对抗宿主先天免疫的调控机制。此外,病毒可以劫持支持宿主的因子进行复制。值得注意的是,宿主抗病毒先天免疫与病毒对抗宿主先天免疫之间的竞争形成了病毒-宿主相互作用网络。此外,病毒复制周期受蛋白质、ncRNA、糖、脂质、激素和无机盐共同调控。鉴于此,我们更新了基于病毒-宿主相互作用网络的抗病毒药物靶点映射,并从病毒免疫学和系统生物学的角度提出了将病毒-宿主相互作用网络作为 IAV 和 SARS-CoV-2 抗病毒药物新靶点的创新思路。
这篇综合综述探讨了人类对疟疾的复杂免疫反应,疟疾是由疟原虫引起的一项重大的全球健康挑战。先天和适应性免疫系统在抵御疟疾方面发挥着关键作用,其机制涉及各种免疫细胞,如树突状细胞、自然杀伤细胞、嗜酸性粒细胞、嗜碱性粒细胞、T 细胞和 B 细胞。这些细胞以动态相互作用的方式运作,识别寄生虫并在其生命周期的不同阶段对其作出反应。我们的综述从方法论上分析了最近关于疟疾免疫反应的研究和文献,重点关注不同免疫细胞的作用以及细胞因子和抗体的产生。我们还探讨了疟疾的流行病学,特别关注印度尼西亚等地区,那里的气候、地理和社会经济因素影响传播动态。研究结果强调了先天免疫系统在早期病原体检测和反应中的关键作用,特别是通过 PAMP 被 PRR(如 TLR 和清道夫受体)识别。此外,还强调了适应性免疫反应的复杂性,包括抗子孢子抗体和 T 细胞免疫,特别是在识别寄生虫输出抗原和发展长期免疫的记忆反应方面。免疫反应的复杂性,加上由于寄生虫复杂的生命周期和不同的流行病学模式而导致的疫苗和疗法开发方面的挑战,强调了在疟疾免疫学和公共卫生战略方面继续研究和创新的必要性。本综述有助于更深入地了解抗疟疾的免疫机制以及控制和根除这种普遍疾病的持续努力。