UICC 版本 12 Java 卡 3.0.4 全球平台认证 2.2(修订版 A、B、C、D、E) SIMAlliance IPP 2.1 GMSA RSP SGP.02 M2M 3.2 省电功能(PSM、eDRX) ETSI R13
UICC 版本 12 Java 卡 3.0.4 全球平台认证 2.2(修订版 A、B、C、D、E) SIMAlliance IPP 2.1 GMSA RSP SGP.02 M2M 3.2 省电功能(PSM、eDRX) ETSI R13
UICC版本12 Java卡3.0.4全球平台认证2.2(AMD。a,b,c,d,e)simalliance ipp 2.1 gmsa rsp sgp.02 m2m 3.2节电功能(PSM,EDRX)ETSI R13
前言将“NASA 计划和项目”改为“NASA 设施、计划和项目”。编辑性修改并将全文中的 PV/S 改为 PVS。第 3.2 段,澄清了压力释放装置、风险评估代码、测试专用装置、地面 PV/S 定义,将“飞行重量”改为“飞行”。第 4.1 段删除了与 NPR 8715.3 重复的要求。编号了第 4.2 段中的子段,将第 4.2.1 段重新编号为 4.2.3,将 4.2.1 子段重新编号为 4.3.1.x,等等。第 4.2.1.3 段重新编号为 4.2.3.3,并扩大了排除范围。 4.2.1.5 增加了某些蒸汽和冷凝水管道的排除规定,压力不得超过 15 psig,4.2.4 澄清了评估的危险排除要求,将 4.2.3.21 重新编号为 4.2.3.22,并重新措辞以提高清晰度,4.3.3.8 删除“至”,4.3.3.15 增加了新的段落,要求明确定义系统边界,4.5.1 在验证 PVS 是否符合原始要求的选项列表中增加了“或分析”,4.5.10 增加了新的段落,允许根据之前的要求认证的系统在满足某些要求的情况下继续运行,将之前的 4.5.10 重新编号为 4.5.11,重写了 4.5.12。 4.8.2.8.4 将“断裂”改为“爆裂”,表 4,注 1,将“破裂”改为“爆裂”,表 4,将“≥”改为“≤”,4.9.2.6,增加对表 2 的引用,4.9.4.1 删除了由于 NPR 8715.3 第 1.13 段冗余而向总部发送豁免的要求,4.10.1.7,增加“…经 PSM 批准…”,4.10.1.10 增加“或背压调节器”,4.11.2.3 在某些限制条件下,PSM 可以延长 PVS 的认证期以满足运行或测试需要,4.11.4.2 在某些限制条件下,PSM 可以延长部件的认证期以满足运行或测试需要,6.2.1.2 将“断裂”改为“爆裂”
修订过程安全管理标准 (PSM),29 CFR 1910.119,以更全面地控制可能导致灾难性后果的反应性危害。 (2001-01-H-R1) - 扩大应用范围,涵盖由特定过程条件和化学品组合导致的反应性危害。此外,扩大自反应化学品危害的覆盖范围。在扩大 PSM 覆盖范围时,应使用客观标准。考虑以下标准:北美行业分类系统 (NAICS)、反应性危害分类系统(例如,基于反应热或有毒气体释放)、事件历史或灾难性潜力。 - 在汇编过程安全信息时,要求充分参考多种信息来源,以了解和控制潜在的反应性危害。有用的来源包括: - 文献调查(例如,Bretherick 的《反应性化学危害手册》、Sax 的《工业材料的危险特性》)。 - 通过计算机工具开发的信息(例如,ASTM 的 CHETAH、NOAA 的化学反应性工作表)。反应性危害调查 10-17-02,第 90 页 - 雇主提供或从其他来源获得的化学反应性测试数据(例如差示扫描
背景:结直肠癌 (CRC) 是癌症相关死亡的主要原因,2022 年新增病例超过 190 万,死亡人数为 90.4 万。化疗是 CRC 的主要治疗方法,但常常导致骨髓抑制,严重影响治疗效果和患者预后。目前缺乏化疗引起的骨髓抑制的预测工具。方法:这项回顾性研究分析了 2020 年 4 月至 2024 年 7 月期间广安门医院接受一线化疗 (CapeOx、FOLFOX、FOLFIRI) 的 855 名 CRC 患者。患者分为训练组 (684) 和验证组 (171)。单变量分析、LASSO 回归和多变量逻辑回归确定了骨髓抑制的危险因素,并使用 ROC 曲线、校准曲线和决策曲线分析开发和验证了预测列线图。采用倾向评分匹配 (PSM) 来最小化组间基线差异,然后对 PSM 后数据进行多元逻辑回归分析。结果:两组的骨髓抑制发生率相似(33.04% vs. 32.16%)。显着的预测因素包括年龄、吸烟、糖尿病、BMI、肿瘤位置、肺转移、白蛋白 (ALB) 水平和癌胚抗原 (CEA) 水平。列线图显示出良好的预测性能,训练组和验证组的 AUC 值分别为 0.78 和 0.80,显示出一致且有临床意义的预测。PSM 进一步验证了模型的稳健性,证实 BMI 是骨髓抑制的一致显着预测因子。结论:该研究确定了 CRC 患者化疗引起的骨髓抑制的关键风险因素,并制定了预测列线图。该工具可以帮助临床医生评估风险并指导治疗决策。局限性包括潜在的选择偏差和需要在不同人群中进行外部验证。未来的研究应该进一步完善和验证这个预测模型。
摘要:能源系统情景被广泛用于将能源供应的发展和由此产生的碳排放路径与政治措施联系起来。为了使情景分析能够充分捕捉可再生能源资源的变化,自本世纪初以来,一种专门的电力部门模型 (PSM) 已经开发出来,该模型使用国家或地方层面每小时分辨率的输入数据。这些模型侧重于技术经济系统优化,需要辅以专家的社会经济知识,以防止出现可能为社会所不接受或与政治目标相悖的解决方案。将这些知识整合到能源系统分析中的一种方法是使用具有适当地理和技术重点的框架情景中的信息。我们提出了一种新颖的方法,通过应用复杂性管理方法将框架情景与 PSM 联系起来,这种方法可以灵活地选择适合不同研究问题的基本情景。我们解释了该方法,并在一个案例研究中对其进行了说明,该案例研究通过将电力行业模型 REMix(可再生能源结构)与区域框架情景联系起来,分析了社会经济发展对 2050 年之前欧洲电力系统转型的影响。建议的方法被证明适合此目的,并且它使政治措施的影响与电力系统发展之间的联系更加清晰。
摘要:金属有机框架(MOF)代表了最有前途的多孔固体之一,用于控制和减少温室气体排放。研究表明,开放金属位点(OMS)与二氧化碳强烈相互作用,因此是CO 2捕获的有效结合位点。但是,许多具有OMS的MOF缺乏框架稳定性,并且通常具有较高的再生温度。为了寻求解决稳定性问题的方法,我们通过通过ZR-TCPB-COOH上的质子交换金属离子,通过ZR-TCPB-COOH在ZR-TCPB-COOM(M = M = M = Alkali/Alkaline Earth Metal)中设计了一系列。原始的MOF(ZR-TCPB-COOH)具有非常强大的框架。PSM过程不会恶化框架稳定性,而是创建与二氧化碳形成牢固键的金属结合位点。结果表明,在低CO 2压力下,使用ZR-TCPB-COOM大大增强了吸收量,并且趋势趋于增加原子数(li + 在室温下N 2上的CO 2也可以实现高吸附选择性(CO 2 /N 2 IAST选择性(15:85)= 539.5)。 这种方法提供了一种可行的方法来提高CO 2捕获能力,尤其是在低浓度下。在室温下N 2上的CO 2也可以实现高吸附选择性(CO 2 /N 2 IAST选择性(15:85)= 539.5)。这种方法提供了一种可行的方法来提高CO 2捕获能力,尤其是在低浓度下。