磷酸盐溶解微生物(PSM)被称为细菌或真菌,使植物可用的土壤中不溶性磷。迄今为止,作为有益的微生物,对PSM的研究表明,它们在农业,环境工程,生物修复和生物技术中具有潜在的应用。目前的高成本和当地微生物的竞争是阻碍PSMS商业化和应用的最重要因素,例如生物培训剂,土壤调节剂或补救剂等。可以参与几种技术策略来解决这些问题的解决方案,例如大规模生产,预先土壤准备,基因工程等。另一方面,需要进一步的研究来提高PSM在溶解磷酸盐,促进植物生长,优选的土壤修复方面的效率和有效性。希望,PSM将被发展为可持续农业,环境保护和管理的环保工具。
抽象的植物专用代谢物(PSM)是多种多样的化合物,在适应各种非生物和生物胁迫的植物适应中具有多方面的作用。psms经常分泌到根根部,这是根周围的一个小区域,它们促进了植物与土壤微生物之间的相互作用。PSM塑造了可能影响植物生长和对不良条件的耐受性的宿主特异性根际微生物群落。植物突变体在PSM生物合成中有缺陷有助于揭示每个PSM在根际中植物 - 微生物群相互作用中的作用。最近,已使用各种方法通过体外方法或通过植物中的锅中的添加到土壤中直接提供PSM。本综述着重于直接PSM应用方法揭示根际植物 - 微生物群相互作用的可行性,并讨论了将知识应用于根际特征的未来工程学的可能性。
抽象的植物专用代谢物(PSM)是多种多样的化合物,在适应各种非生物和生物胁迫的植物适应中具有多方面的作用。psms经常分泌到根根部,这是根周围的一个小区域,它们促进了植物与土壤微生物之间的相互作用。PSM塑造了可能影响植物生长和对不良条件的耐受性的宿主特异性根际微生物群落。植物突变体在PSM生物合成中有缺陷有助于揭示每个PSM在根际中植物 - 微生物群相互作用中的作用。最近,已使用各种方法通过体外方法或通过植物中的锅中的添加到土壤中直接提供PSM。本综述着重于直接PSM应用方法揭示根际植物 - 微生物群相互作用的可行性,并讨论了将知识应用于根际特征的未来工程学的可能性。
采用 PSM 代表着地月空间 SDA 实施方式的重大转变,即从被动应对转变为主动应对。这一策略不仅仅只是对检测到的威胁或异常做出反应,还可以预测和预防潜在的碰撞和其他危险。随着地月空间的活动日益多样化,维护该地区的安全至关重要。PSM 的应用为实现这些目标提供了一个强大的框架,提供了一种可扩展且适应性强的解决方案,可以随着地月操作日益增长的需求而发展。这种主动的 SDA 方法不仅可以保障正在进行的任务,还可以为地月空间的可持续发展奠定基础,确保这一关键区域对子孙后代来说仍然是可进入和安全的。
城市建设的加剧逐渐破坏了人类居住的生态系统。作为生态系统的基础,植物需要绿色、低成本和有效的技术来维持其在压力环境中的生长。对529篇文章(1999–2023年)的文献计量分析共得到286个关键词和10个聚类,表明景观生态系统中微生物功能的研究越来越重要。磷酸盐溶解微生物(PSM)还可以提高植物的抗病性、适应性和存活率。PSM被广泛用于促进植物生长和改善生态质量。它们可以增加土壤中磷的有效性,减少植物对化肥的依赖。微生物是景观生态系统中调节磷的重要工具。最重要的是,在城市和乡村景观实践中,PSM可以应用于绿地、居住区景观、道路绿化和苗圃种植,在提高植被覆盖率、增强植物抗性、改善环境质量和缓解热岛效应方面发挥着重要作用。 PSM还有助于恢复棕地等污染区域的生态环境和生物多样性,为居民提供更加宜居的生活环境。因此,PSM的多重功效有望在城乡景观生态系统建设中发挥越来越重要的作用。
背景:对接受深部脑刺激 (DBS) 的患者进行组分析有助于理解和优化运动障碍患者的治疗。概率刺激图 (PSM) 通常用于分析组织刺激与症状效果之间的相关性,但应用的方法不同。目的:计算特定于组的 MRI 模板和 PSM,以研究 PSM 模型参数的影响。方法:分析了 68 名植入尾部未定带的特发性震颤患者的头晕改善和发生情况。输入数据包括每个电极接触的最佳参数(筛选)和临床使用的设置。针对所有 DBS 设置计算了特定于患者的电场模拟(n = 488)。将电场转换为特定于组的 MRI 模板以进行分析和可视化。不同的比较基于表示发生率 (N-map)、平均改善 (M-map)、加权平均改善 (wM-map) 和体素 t 统计量 (p-map) 的 PSM。这些图用于研究输入数据 (临床/筛查设置)、聚类方法、采样分辨率和加权函数的影响。结果:筛查或临床环境对 PSM 的影响最大。wM-map 的平均差异分别为左侧和右侧的 12.4 和 18.2%。基于 wM-map 或 p-map 提取的簇显示体积有显著变化,而定位相似。加权函数对 PSM 的影响很小,除了 wM-map 簇的定位明显发生变化。结论:在创建 PSM 以研究解剖学和 DBS 结果之间的关系时,输入数据的分布和聚类方法是最重要的考虑因素。© 2022 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
抽象的精度致动是高端设备域中的基础技术,其中中风,速度和准确性对于处理和/或检测质量,航天器飞行轨迹的精度以及武器系统罢工的准确性至关重要。压电执行器(PEAS)以其纳米级的精度,柔性中风,对电磁干扰的耐药性和可扩展结构而闻名,在各个领域都广泛采用。因此,本研究的重点是涉及超高精度(千分尺及以后),微小尺度和高度复杂的操作条件的极端情况。它提供了有关豌豆的类型,工作原理,优势和缺点的全面概述,以及它们在压电式智能机电系统(PSMS)中的潜在应用。要解决高端设备字段中极端情况的需求,我们已经确定了五个代表性的应用领域:定位和对齐,生物医学设备配置,高级制造和处理,振动缓解,微型机器人系统。每个区域进一步分为特定的子类别,在该类别中,我们探讨了基本关系,机制,代表性方案和特征。最后,我们讨论了与豌豆和PSMS有关的挑战和未来发展趋势。这项工作旨在展示豌豆应用的最新进步,并为该领域的研究人员提供宝贵的指导。
植物 - 微生物相互作用的领域正在迅速发展,随着生物技术和生物工程的进步,我们正处于释放农业,环境可持续性和健康科学方面的新机会。微生物生物技术与植物系统的整合具有革新作物生产力,营养效率,病原体抗性和气候弹性的潜力。随着研究的继续,生物技术干预措施是针对全球挑战的创新解决方案,例如粮食安全,生态系统退化和可持续的能源生产。本社论探讨了植物 - 微生物生物技术的最新进步,重点是农业中的微生物应用,生物工程突破以及这种动态场的未来轨迹。微生物群落对于植物健康和发育至关重要,并与根际中的植物根相互作用,以促进营养摄取,增强胁迫耐受性并预防病原体。有益的植物相关微生物,例如磷酸盐溶解的微生物(PSM)和氮固定细菌,正在越来越多地探索以减少对化学肥料的依赖并促进可持续的农业(Jain等人。; Pang等。)。磷是植物生长的关键元素,但是由于它倾向于与钙,铁或铝形成不溶性化合物,因此在土壤中通常无法使用。psms通过分泌溶解这些结合化合物的有机酸来增强磷的可用性,从而使磷可供植物进入(Pang等人。)。)。)。芽孢杆菌,假单胞菌和曲霉物种可以显着增加磷的摄取并改善植物的生长和产量(Jain等人。共生细菌,例如根瘤菌,勃arad骨和硫唑群,通过将大气氮转化为氨可以使用,在氮固定中起着至关重要的作用,植物可以使用。这种自然过程减少了对合成氮肥的需求,从而促进了农业和环境可持续性(Pang等人。将这种微生物功能整合到农业系统中可以提高作物产量,减少化学投入并发展弹性的农业系统。
使用Proteome Discoverer 3.2软件和Sequest®HT搜索算法进行数据分析。肽的修饰包括用于HELA的氨基甲基甲基化(C)的动态修饰,用于蛋白质混合物的羧甲基化(C),TMTPRO标签(N-末端,K)和MET氧化。FDR阈值在渗透剂节点中设置为1%,以识别肽和蛋白质鉴定的高置信度。在报告基因离子量化器节点中指定了11 ppm的记者离子峰积分耐受性,并使用新的集成的报告频道控制通道范围的范围范围范围进行了剥离和非剥离的控制通道,对剥离和非置换通道组的归一化进行了归一化。
土壤化学熏蒸是提高农业生产力的有效且流行的方法。然而,熏蒸剂的广谱生物活性会损害与土壤磷循环有关的土壤有益的微生物,例如土壤磷溶解的微生物(PSMS)。我们回顾了土壤化学熏蒸对土壤磷循环的影响,以及最终导致农作物的磷利用率改变的潜在基本机制。这些复杂的过程涉及高度多样化的PSM社区和大量的土壤磷形式。我们讨论了旨在抵消熏蒸对磷利用率,磷使用效率和作物产量的磷化性修订。我们还强调区分化学熏蒸剂引起的土壤磷循环的影响,以及由熏蒸过程引起的(例如塑料覆盖)。这些通常在文献中被冲突;区分它们对于确定适当的修正案以补救可能的耗尽土壤磷降低至关重要。