3D高斯脱落(3DGS)已成为一种开创性的3D场景表示技术,提供了前所未有的视觉质量和渲染效率。但是,3DGS场景的大量数据卷在流媒体上构成了重大挑战。现有对3DGS的研究主要集中在压缩和提高效率上,忽略了流传输的具体质量。此外,3DG中的球形谐波颜色表示使基于视口的传输分配复杂化。在没有明显质量下降的情况下实现层次结构高斯流也是一个重大挑战。为了应对这些挑战,我们提出了SRBF-Gaussian,这是一种彻底改变传统3DGS格式的新范式。我们的方法基于球形径向基础函数(SRBF)和HSL颜色空间引入了与视口有关的颜色编码,从而可以选择性地传输与视口相关的颜色数据。这在保持视觉质量的同时减少了数据传输。我们实施自适应高斯修剪和传输,以适应当前的视口和网络条件。补充 - 我们开发了连贯的多级高斯表示,以在质量水平之间平稳过渡。我们的系统结合了用户 - 行为感知的流策略,以预测和预先提取相关数据。在云VR方案中,我们的方法表明了实质性改善,PSNR增长了5.63%-14.17%,延迟下降7.61%-59.16%,总体经验质量(QOE)提高了10.45%-30.12%。
随着通过不安全通信渠道传输的数据量不断增加,大数据安全已成为网络安全领域的重要问题之一。为了解决这些问题并确保数据安全,需要一个强大的隐私保护密码系统。这种解决方案依赖于混沌加密算法,而不是标准加密方法,这些算法具有多级加密级别,包括高速、高安全性、低计算开销和程序能力等特点。在本文中,提出了一种使用线性反馈移位寄存器 (LFSR) 和基于混沌的量子混沌映射的安全图像加密方案。该方案的重点主要取决于来自算法输入的密钥。威胁形势、统计测试分析以及与其他方案的关键比较表明,所提出的算法非常安全,并且可以抵抗各种不同的攻击,例如差分攻击和统计攻击。与现有加密算法相比,所提出的方法具有足够高的灵敏度和安全性。几个安全参数验证了所提工作的安全性,例如相邻像素之间的相关系数分析、熵、像素变化率 (NPCR)、统一平均变化强度 (UACI)、均方误差 (MSE)、强力、密钥敏感度和峰值信噪比 (PSNR) 分析。所提技术生成的密码的随机性也通过了 NIST-800-22。NIST 的结果表明,密码具有高度随机性,不会产生任何类型的周期性或模式。
摘要随着计算机技术的出现,人工智能(AI)有助于放射科医生诊断脑肿瘤(BT)。可以在医疗保健中提高疾病的早期发现导致进一步的治疗,其中典型的AI系统应用在时间和节省的方面发挥了至关重要的作用。磁共振(MR)图像通过图像增强技术增强,以改善对比度和颜色的效果。此外,对于BT的几种类型的MR成像问题,传统方法是无偿的。深度学习技术可以扩展,以帮助克服常规肿瘤检测中遇到的常见问题。因此,在这项工作中,已经提出了基于MR图像的BT检测的即兴Yolov5技术。最终,使用混合网格搜索优化器算法(HGSOA)应用高参数优化(HPO)的想法,以增强拟议深神经网络中超级参数的肿瘤检测性能。为了评估提出的模型的有效性,麦卡洛克的算法rithm用于定位肿瘤区域分割的图像,并且还使用真实注释的图像检查了分割结果。使用MW脑测试图像进行了各种实验,以测量提出的微调模型的准确性。最后,将分类指标与现有的最新技术进行比较,包括MSE,PSNR,SSIM,FSIM和CPU时间,以证明所提出的模型的有效性。在MRI-BT的分类学中,CNN实现了更大的精确性。
摘要:增强 T1 (T1ce) 是诊断和分析脑肿瘤(尤其是神经胶质瘤)最重要的磁共振成像 (MRI) 模式之一。在临床实践中,常见的 MRI 模式(例如 T1、T2 和液体衰减反转恢复)相对容易获取,而考虑到额外的成本和对造影剂过敏的潜在风险,T1ce 更具挑战性。因此,开发一种从其他常见模式合成 T1ce 的方法具有重要的临床意义。当前的配对图像转换方法通常存在需要大量配对数据并且在合成过程中不关注特定感兴趣的区域(例如肿瘤区域)的问题。为了解决这些问题,我们提出了一个难度感知共同的半监督多模态 MRI 合成网络(DS 3 -Net),涉及配对和非配对数据以及双层知识提炼。DS 3 -Net 预测难度图以逐步促进合成任务。具体而言,像素约束和块状对比约束由预测的难度图指导。通过对公开的 BraTS2020 数据集进行大量实验,DS 3 -Net 在各个方面都优于其监督对应者。此外,仅使用 5% 的配对数据,所提出的 DS 3 -Net 实现了与利用 100% 配对数据的最先进的图像转换方法相媲美的性能,提供 0.8947 的平均 SSIM 和 23.60 的平均 PSNR。源代码位于https://github.com/Huangziqi777/DS-3_Net。
摘要 - 地球观察卫星可以在不同的时间,气候条件和平台形式下捕获光学图像,在颜色和亮度上表现出很大的差异,在合成大面积光学卫星图像时会导致视觉体验差。相关的颜色平衡问题引起了研究人员的极大关注,但诸如缺乏研究数据和对模型参数的敏感性之类的挑战持续存在。为了解决这些问题,本文发布了一个公开开放的数据集,并提出了语义细分增强色彩平衡网络(SECBNET)。首先,为了减轻研究数据的稀缺性,我们开发了一个公共可用的遥感图像颜色平衡数据集,Zhu hai色彩平衡图像(ZHCBI),以支持相关的研究活动。第二,为了提高颜色平衡图像和目标图像之间的语义一致性,我们设计了以分割结果为指导的双分支U-NET架构,并提出了一种新颖的分割特征损失函数。最后,为了解决分段处理中块之间的接缝问题和不自然的过渡,我们引入了一个基于加权平均的后处理模块。我们对ZHCBI数据集上的现有主流颜色平衡算法进行了比较实验和分析。结果表明,与其他主流方法相比,我们所提出的方法可实现最先进的颜色平衡质量,并具有显着改善的视觉效果和更高的峰信噪比(PSNR)(23.64 dB)。
摘要。在结直肠癌诊断中,常规结肠镜检查技术面临着临界局限性,包括有限的视野和缺乏深度信息,这可能会阻碍检测预癌病变。当前的方法很难为结肠表面提供全面和策划的3D重建,这可以帮助最大程度地减少缺失的区域并重新进行癌前息肉。解决这个问题,我们介绍了“高斯煎饼”,这种方法利用了3D高斯分裂(3D GS)与经常基于神经网络的同时定位和映射(RNNSLAM)系统相结合。通过将几何和深度正则化引入3D GS框架 - 我们的方法可确保高斯与结肠表面更准确地对齐,从而使3D重建更加顺畅,并对详细的纹理和结构进行了新颖的观看。在三个Di-verse数据集中进行的评估表明,高斯煎饼增强了新型视图的合成质量,超过了当前的领先方法,PSNR增长了18%,SSIM提高了16%。它还提供了超过100×的更快渲染和超过10倍的培训时间,使其成为实时应用程序的实践工具。因此,这有望实现临床翻译,以更好地检测和诊断结直肠癌。代码:https://github.com/smbonilla/gaussianpancakes。
最近,Vision Transformer在低分辨率序列(即视频超分辨率(VSR)任务)中恢复缺失细节方面取得了巨大成功。尽管具有VSR准确性,但重大计算率以及大型内存足迹阻碍了受约束设备上基于变压器的VSR模型的实现。在本文中,我们通过提出一个新颖的功能级掩盖的处理框架来解决上述问题 - 与M询问的VSR工作:vsr和mia-vsr(MIA-VSR)。MIA-VSR的核心是利用相邻框架之间的特征水平的时间连续性来重新计算冗余计算,并更合理地使用以前增强的SR特征。具体而言,我们提出了一个框架内和框架间的注意力块,该障碍占据了过去的特征和输入特征的各个角色,并且仅利用先前增强的fe fore fors for提供补充信息。此外,开发了一个自适应屏蔽预测模块,以根据相邻帧之间的特征模拟跳过不重要的计算。我们进行了详细的研究研究,以验证我们的贡献,并将所提出的方法与最近最新的VSR APARCHES进行比较。实验结果表明,微VSR提高了最先进方法的内存和计算效率,而无需交换PSNR准确性。该代码可在https://github.com/ labshuhanggu/mia-vsr上找到。
摘要 - 在这项研究中,一种新方法正在引起编码2D和3D颜色图像。将DNA链构造用作结构该方法的基础。此方法由两个主要阶段组成,即加密和解密阶段。每个阶段都包含多个操作,以达到所需的目标。在编码阶段,准备了一张特别的表格,以显示工作的机构。首先将DNA碱基编码为两个二进制订单,然后将两个零添加到字符串中,最终由四个二进制位组成,它们的大小与在二进制中表示的一组十六进制数字平行,然后在其中进行XOR操作,然后在两个值之间完成两个值,以使结果与原始代码完全不同。然后将我们获得的二进制值转换为十进制值,该值放置在阵列中,其大小与要编码的图像相同。最后,最后一个数组是用指数函数因子处理的,因此最终结果是100%编码图像。在解码阶段,构建了另一种算法,该算法反映了在加密阶段之前的工作,其中结果是原始图像的确切副本。值得注意的是,不同大小的标准图像被用作测试图像。该方法的性能评估是基于几个因素来计算的:MSE,峰值PSNR以及执行编码和解码过程所需的时间。在质量和时间方面与其他方法的结果相比,该方法获得了良好的结果。
简介 CNN 或卷积神经网络是深度学习的一个子集。深度学习是机器学习和人工智能的更广泛的集合。深度学习是一种从数据集中进行复杂学习的方法,并根据数据集创建模型(Patel 等人,2018 年)。深度学习可以是一种监督学习的方式,也可以是一种无监督学习的方式。通常,它有一个现实生活中的问题的解决方案,学习结果可以是监督的、半监督的或无监督的,首先给出一个数据集,然后首先要对数据进行操作,必须清理数据,因为在现实生活中的数据模型中有很多数据缺失,无法用缺失数据创建模型,为此,必须准备数据以供算法运行,在应用算法之前,必须仔细清理数据并了解实际情况,然后才能应用合适的算法,应用算法后,人们将得到基于人工神经网络的理想数据表示(Mongaet al. 2020)。人工神经网络 (ANN) 的名称听起来可能与生物神经元相似,因为其结构与位于大脑内的神经元非常相似,但它与生物神经元有一些关键区别,例如人工神经网络是静态的,而另一个是活体生物体,因此本质上是动态的,另一个是人工神经网络是符号的,生物神经网络是模拟的。深度学习具有多种架构,这种多种架构在许多领域都有多种应用,例如“自然语言处理 (NLP)、医学图像分析、药物设计、生物信息学、语音识别、深度神经网络、卷积神经网络、医学视觉、计算机视觉”。转换或卷积神经网络处理图像恢复。卷积神经网络在“图像分割、裁剪图像分析、脑机接口、图像分类”等领域有着广泛的应用。受深度学习技术在图像处理领域的最新成功的启发,我们利用样本图像集使用反向传播对前馈深度卷积神经网络 (CNN) 与 Inception-ResnetV2 进行训练,以识别 RGB 和灰度值中的模式。然后,给定测试图像的灰度 L 通道,使用训练后的神经网络预测两个 a* 和 b* 色度通道。CNN 在融合层的帮助下生动地为图像着色,同时考虑了局部特征和全局特征。采用两个目标函数,即均方误差 (MSE) 和峰值信噪比 (PSNR),对估计的彩色图像与其基本事实之间的质量进行客观评估。该模型在我们自己创建的数据集上进行训练,该数据集包含 1.2 K 张尼泊尔古老而古老的照片,每张的分辨率为 256×256。损失即 MSE、PSNR,模型的自然度和准确率分别为 6.08%、34.65 dB 和 75.23%。除了展示训练结果之外,还通过用户研究来评估生成图像的公众接受度或主观验证,其中模型在评估彩色结果时显示出 41.71% 的自然度。随着计算机图形渲染和图像编辑技术的巨大进步,计算机生成的假图像通常不能反映现实情况,现在可以很容易地欺骗人类视觉系统的检查。在这项工作中,我们提出了一个基于卷积神经网络 (CNN) 的模型,通过通道和像素相关性来区分计算机生成的 (CG) 图像和自然图像 (NI)。所提出的 CNN 架构的关键组件是一个自编码模块,它将彩色图像作为输入来提取
不可察觉的对抗性攻击旨在通过添加与输入数据的不可察觉的概念来欺骗DNN。以前的方法通常通过将共同的攻击范式与专门设计的基于感知的损失或生成模型的功能相结合,从而提高了攻击的易用性。在本文中,我们提出了扩散(Advad)中的对抗攻击,这是一种与现有攻击范式不同的新型建模框架。通过理论上探索基本的建模方法,而不是使用需要神经网络的reg-ular扩散模型的转化或发电能力,从而将攻击作为非参数扩散过程概念化。在每个步骤中,仅使用攻击模型而没有任何其他网络来制定许多微妙而有效的对抗指导,从而逐渐将扩散过程的结束从原始图像终结到了所需的不可感知的对抗性示例。以拟议的非参数扩散过程的扎实理论基础为基础,达到了高攻击功效,并且在本质上降低了整体扰动强度,并实现了高发作的效果。此外,还提出了增强版本的Advad-X,以评估我们在理想情况下的新型框架的极端。广泛的实验证明了拟议的Advad和Advad-X的有效性。与最新的不可察觉的攻击相比,Advad平均达到99.9%(+17.3%)的ASR,为1.34(-0.97)L 2距离,49.74(+4.76)PSNR和0.9971(+4.76)和0.9971(+0.0043)(+0.0043)ssim,抗四个DIFERTIBER架构的DNN均具有三个流行的DNN。代码可在https://github.com/xianguikang/advad上找到。
