• 与其他存储技术相比,Echogen 的 CO 2 基 PTES 具有显著优势 • 安全性 – 火灾风险极低。中等存储温度 = 危险性较低。闭环系统所需的 CO 2 库存量小 • 操作员熟悉度 – 发电厂设备和控制 • 电网支持 – 同步发电机和电动机提供 VAR 支持、自然惯性 • 低资本支出 – 中等存储温度 = 低成本材料 • 无需战略性或昂贵材料 – 碳钢、混凝土是主要建筑材料 • 高存储密度 - > 5 英亩场地内 1 GWh • 无重大地理限制 • 系统寿命长且不会退化 – 预计工厂寿命为 60 年,无需增强
绝缘盖的顶部衬里被扩散的开膜取代。这种类型的膜是从建筑物中的屋顶设计中知道的,并使水从绝缘层中扩散出来。膜可防止水积聚。让水从专利的水积累中扩散出来。
本报告为美国政府机构赞助工作的记录。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要:为了将大量可再生能源整合到电网中,必须使用大规模和长时间(4-8 小时以上)的电能存储技术。这种有前途的存储技术是基于布雷顿循环的泵送热电存储。本文的创新之处在于对这种存储技术的两种替代配置进行了技术经济比较。从技术经济的角度研究和比较了基于液体和基于固体的泵送热电存储。评估了工作流体(空气、氮气和氩气)、额定功率和标称容量的成本影响。根据考虑的配置,空气是这两种技术最合适的工作流体,它简化了工厂管理,与氩气相比,成本降低了 1% 至 7%。尽管布局更复杂,热存储材料更昂贵,但基于液体的系统是最便宜的,尤其是对于大型应用而言。这是因为它们的工作压力较低,从而降低了涡轮机和热能存储材料容器的成本。液体系统每千瓦时的成本比固体系统低 50% 至 75%。相反,每千瓦成本使固体系统受益,最高可达 50 MW 的额定功率,而对于更大的额定功率,液体系统的功率转换装置再次更便宜。这是由于涡轮机对总成本的影响。涡轮机约占固体系统总成本的 70%,而液体系统约占 31%。由于与其他部件相比,涡轮机的成本与尺寸的相关性较差,因此固体系统不太适合大型应用。
但是,具有高储物容量的已建立的电力储存技术具有显着的缺点:泵送 - 存储水力发电(PSH)和加压储存(CAES)的特定费用较低,但地理上是限制的。[2]作为PSH和CAE的替代方案,预计大规模的电池存储系统的特定成本更高。[1]此外,电池存储系统需要特定的材料(例如锂的生产)。对于其他应用,例如电动汽车或电动设备,也需要锂,从而导致潜在的供应问题,而无需高回收率。[3]除了既定的存储技术,功率到水平的能力(PTH 2 TP)和甲烷到功率(PTCH 4 TP)外,将来还具有有希望的前景,尤其是对于长期存储而言。[4]但是,这些技术尚未开发用于大规模的电力存储。储存电力的有希望的替代技术是泵送电力存储(PTES)。[5] PTES系统使用热泵(HP)将电力转换为热量。然后将热量发送到热存储系统。使用加热发动机(HE)将存储的热能重新转换为电力。PTES系统具有没有地质限制的地理功能。[6]因此,可以避免使用长的电力运输。此外,还使用了仅使用钢等丰富材料来构建PTES系统。[11 - 13]基于焦耳的PTES系统承诺有利于70%左右的往返货币。文献根据HP区分了PTES系统的三种主要类型,他使用的过程:基于焦耳的PTES系统,[7,8]跨临界PTES Systems,[9,10]和基于Rankine的PTES Systems。[7,8]但是,这些高系统效率依赖于高耐高力压缩机和扩展器,例如基于焦耳的PTES系统具有高度高的投资成本(SIC),高达6000美元$ KW 1 EL。[14]
PIT热量存储(PTE)技术已与丹麦的大太阳能收集器田(Soerensen and from,2011年)相结合。原则上,PTES是一个衬有水密聚合物衬里的大水库(以防止水泄漏到地面),并用浮动的绝缘盖覆盖(以减少热量损失)。PTES技术的主要好处是它的简单性和低材料的使用,这使建筑成本低于27欧元/m 3(Schmidt等,2018)。但是,由于PTES还不是一项成熟的技术,因此现有系统的存储效率范围从60%到90%(Sifnaios等,2023a)。到目前为止,PTES系统仅用于季节性储存,使区加热网络的太阳分数高于40%(Sveinbjörnsson等,2017)。
本研究分析了基于闭环布雷顿-焦耳循环并与聚光太阳能发电 (CSP) 电厂集成的创新型泵送热能存储 (PTES) 系统的预期性能。集成的 PTES - CSP 电厂包括五台机器(两台压缩机和三台涡轮机)、一个中央接收塔系统、三个水冷却器和三个热能存储 (TES) 罐,而氩气和花岗岩卵石分别被选为工作流体和存储介质。首先对集成电厂的主要部件进行了尺寸测量,以设计一个集成的 PTES-CSP 电厂,其标称净功率为 5 MW,标称存储容量为 6 等效运行小时数。已经在 MATLAB-Simulink 中开发了特定的数学模型来模拟不同操作条件下的 PTES 和 CSP 子系统,并评估三个储罐在充电和放电过程中的温跃层剖面演变。最终开发了一种控制策略,根据电网服务请求、太阳能可用性和 TES 水平来确定工厂的运行模式。考虑到 PTES 子系统在意大利能源市场的整合,分析了该系统在夏季和冬季的性能,以进行套利。结果证明了 PTES 系统与 CSP 工厂混合的技术可行性以及集成系统参与能源套利的能力,尽管与单一 PTES 系统(约 60%)相比,往返效率较低(约 54%)。
洛杉矶空军基地 - 太空系统司令部的受保护的战术企业服务计划最近进行了他们的第一个演示准备功能活动,称为DRC1,在此期间通过PTES地面的关节枢纽通过KA-BAND INMARSAT-5 INMARSAT-5商业通信卫星通过Boeing构建的,从而通过基于地面的终端驱动器来启动,该数据是通过基于PTES地面的关节枢纽发送的。这标志着PTW首次使用PTES设备在空中传输。“我为合并后的团队的非凡努力感到自豪,使DRC 1成为成功的活动。在所有各方中,找到创新的解决方案并实现战略目标的确是“较少的徽章”。”在马萨诸塞州理工学院的林肯实验室举行的示威活动展示了PTW的卓越数据速率和抗JAM性能,而不是商业卫星通信。PTES计划的快速硬件交付和DevSecops软件实践使该事件成为可能。在演示环境中,团队能够了解有关系统行为的更多信息,以识别问题,进行代码更改,通过质量控制和安全门,并部署到本地硬件。ptes devSecops功能为使该活动成为现实的软件传递提供了动力。“当您能够在演示环境中看到系统并像本周PTES团队一样迅速提供更新时,它确实可以驱使回家使用DevSecops实践执行计划的优势,” PTES计划的SSC首席工程师Rich Sanchez说。PTES计划计划以第二次DRC活动为基础DRC 1的成功,重点是11月在PTES Network上注册终端调制解调器。太空系统司令部是美国太空部队的命令,负责通过快速识别,原型,现场和维持创新的,基于空间的解决方案来满足国家国防战略的要求,从而为战士开发和获取致命和弹性的太空能力。SSC的功能包括开发测试,生产,发射,轨道上的结帐和维护USSF太空系统以及对USSF科学和技术活动的监督。该艺术家的概念描绘了Inmarsat-5波音制造的卫星,该卫星用来通过受保护的战术波形(PTW)有效地将数据发送到基于地面的终端调制解调器。该事件标志着PTW首次使用波音开发的保护战术企业服务设备广播。(图片来源:波音图像)
首先开发了各种 PTES 和太阳能-PTES 概念的简单热力学模型。结果用于确定哪些系统最有前景并值得进一步研究。然后建立了更详细的技术经济模型。技术模型捕获了系统中每个组件的性能。特别是,需要热交换器的质量表示,并且模型已根据从文献中获取的实验结果成功验证。对每个组件的非设计性能进行了建模,从而能够评估可变部分负载和环境温度下的 PTES 和太阳能-PTES 性能。通过从文献中获取每个组件的成本相关性来估计系统资本成本和平准化存储成本 (LCOS)。每个组件都使用了几个相关性,这使得能够使用蒙特卡罗技术来计算可能的成本及其不确定性。该分析强调了热交换器设计对系统性能的重要性,并且需要高效率值(超过 90%)才能实现合理的往返效率。研究发现,这种高效率还可以最大限度地降低终身成本 (LCOS)。
可再生能源的生长需要灵活,低成本和有效的电气存储,以平衡能源供应与需求之间的不匹配。泵送的热能储存(PTE或Carnot电池)在电气产生大于需求时,用热泵(或其他加热系统)将电能转换为热能;当电力需求超过生产时,PTE会从两个热存储库(可能是Rankine循环模式)产生电力。经典PTES架构的成就不超过60%的往返电力效率。但是,使用废热回收率(热积分PTE)的创新档案能够达到比热泵的电力消耗大的功率循环的电力生产,从而增加了技术的价值。在本文中,开发了一个通用模型来根据两个主要输入(废热和环境空气温度)绘制性能映射。无论储存配置如何,当废热温度高,气温较低并且热泵的提升时,可以达到最佳性能。最后,将热整合的PTE技术与其他能量储藏的技术进行了比较,并且由于其高往返效率,低特定的价格和没有特定的地理条件,因此在理论上是有希望的。©2020 Elsevier Ltd.保留所有权利。