转录后基因沉默 (PTGS) 是了解和控制植物代谢途径的有力工具,是植物生物技术的核心。PTGS 通常通过将小干扰 RNA (siRNA) 递送到细胞中来实现。标准的植物 siRNA 递送方法(农杆菌和病毒)涉及将 siRNA 编码到 DNA 载体中,并且仅适用于某些植物物种。在这里,我们开发了一个基于纳米管的平台,用于直接递送 siRNA,并在完整的植物细胞中显示出高沉默效率。我们证明纳米管成功递送 siRNA 并沉默内源基因,这归功于有效的细胞内递送和纳米管诱导的保护 siRNA 免受核酸酶降解。这项研究表明,纳米管可以实现大量依赖于 RNA 递送到完整细胞的植物生物技术应用。
Bt作物的应用范围以及田间Bt抗性害虫的出现呼唤新的害虫防治技术(Carriere等,2015;Jin等,2015;Tabashnik等,2013)。RNA干扰(RNAi)现象广泛存在于真核生物(植物、真菌、昆虫、动物和线虫等)中,并已被开发为一种有前途的作物健康保护技术(Zhang等,2017)。 RNAi 是一个自然过程,它通过多种方式调控基因表达:有效的转录后基因沉默(PTGS)、翻译抑制、RNA 不稳定化和/或通过指导 DNA 甲基化进行转录基因沉默(TGS)(Fire 等人,1998 年;Coleman 等人,2015 年;Ghildiyal 等人,2008 年;Huvenne 和 Smagghe,2010 年;Jones-Rhoades 等人,2006 年;Liu 等人,2020 年;Mao 等人,2007 年;Sherman 等人,2015 年)。本文,我们回顾了基于 RNAi 的植物保护技术的最新进展,特别是其在植物保护中的应用。
◥ 阿司匹林和二十碳五烯酸 (EPA) 可降低结肠直肠腺瘤性息肉风险并影响氧化脂质的合成,包括前列腺素 E2 。我们在随机 2 2 析因 SEAFOOD 试验中研究了氧化脂质代谢基因中的 35 个 SNP,例如环氧合酶 ( PTGS ) 和脂氧合酶 ( A LOX ),以及已经与阿司匹林降低结肠直肠癌风险相关的 7 个 SNP(例如 TP53;rs104522),是否改变了阿司匹林和 EPA 对结肠直肠息肉复发的影响。通过对 SNP 基因型结肠直肠息肉风险进行负二项式和泊松回归分析,将治疗效果报告为发病率比 (IRR) 和 95% 置信区间 (CI)。统计显著性通过调整 P 值和 q 值以错误发现率表示。542 名(共 707 名)试验参与者同时具有基因型和结肠镜检查结果数据。与未服用阿司匹林的人相比,服用阿司匹林的人结肠息肉风险降低仅限于 rs4837960(PTGS1)常见纯合子[IRR,0.69;95% 置信区间 (CI),0.53 – 0.90);q = 0.06]、rs2745557(PTGS2)复合杂合子稀有纯合子
摘要:病毒诱导的基因沉默(VIGS)是一种 RNA 介导的反向遗传学技术,现已发展成为分析基因功能不可或缺的方法。它利用植物的转录后基因沉默(PTGS)机制下调内源基因,以防止系统性病毒感染。根据最近的进展,VIGS 现在可以用作高通量工具,通过暂时抑制目标基因表达,通过病毒基因组在植物中诱导可遗传的表观遗传修饰。由于 VIGS 诱导的 DNA 甲基化进展,植物中正在开发具有所需性状的新型稳定基因型。在植物中,RNA 指导的 DNA 甲基化(RdDM)是一种机制,其中表观遗传修饰物由小 RNA 引导至目标位点,小 RNA 在靶基因的沉默中起主要作用。在这篇综述中,我们描述了 DNA 和 RNA 病毒载体的分子机制,以及通过改变研究植物中通常无法通过转基因技术获得的基因所获得的知识。我们展示了如何使用 VIGS 诱导的基因沉默来表征跨代基因功能和改变的表观遗传标记,从而改善未来的植物育种计划。
缩写 8-oxodG 8-氧代-7,8-二氢-2′-脱氧鸟苷 8-oxoGua 8-氧代-7,8-二氢鸟嘌呤 A549 肺泡基底上皮细胞腺癌 AA 花生四烯酸 AhR 芳烃受体 BaP 苯并[a]芘 BEAS-2B 永生化肺上皮细胞 BER 碱基切除修复 CT-DNA 小牛胸腺 DNA CYP 细胞色素 P450 ELISA 酶联免疫吸附试验 EOM 可提取有机物 ETS 环境烟草烟雾 GC/MS 气相色谱/质谱法 HEL 人胚胎肺成纤维细胞 HPLC-MS/MS 高效液相色谱-串联质谱法 IARC 国际癌症研究机构 IsoP 15-F 2t-异前列腺素 IUGR 宫内生长受限 LBW 低出生体重(< 2500 g) LC/GC-MS 液相/气相色谱质谱联用 LPO 脂质过氧化 NER 核苷酸切除修复 NHEJ 非同源末端连接修复 OGG1 8-氧鸟嘌呤 DNA 糖基化酶 PAH 多环芳烃 PBL 外周血淋巴细胞 PGE 2 前列腺素 E2 PM 颗粒物 PTGS 前列腺素内过氧化物合酶 ROS 活性氧 S9 组分 微粒体组分酶 SNP 单核苷酸多态性 UGT UDP-葡萄糖醛酸转移酶 XRCC5 X 射线修复交叉互补 5
RNA干扰(RNAi)是一种生物技术工具,用于植物中的基因沉默,具有内源性和外源性应用。内源性方法,例如宿主诱导的基因沉默(HIG),涉及基因修饰(GM)植物,而外源方法包括喷雾诱导的基因沉默(SIGS)。RNAi机制取决于引入双链RNA(dsRNA),该RNA被处理成简短的干扰RNA(siRNA),从而降低了特定的Messenger RNA(mRNA)。然而,由于序列同源性或siRNA诱导的表观遗传变化,对非目标生物和GM植物的意外影响是一个问题。EPA和EFSA等监管机构强调需要进行全面的风险评估。检测意外效果是复杂的,通常依靠生物信息学工具和不靶向的分析(例如转录组学和代谢组学),尽管这些方法需要广泛的基因组数据。本综述旨在对植物中不同来源的简短干扰RNA引起的RNAi效应的机制进行分类,并确定可用于检测这些作用的技术。此外,总结了实际案例研究,并讨论了以前对基因修饰植物中的意外RNAi效应进行了研究。当前文献受到限制,但表明RNAi是相对特定的,在GM作物中几乎没有意外的影响。但是,需要进一步的研究来充分理解和减轻潜在风险,尤其是与转录基因沉默(TGS)机制相关的风险,这些机制比转录后基因沉默(PTGS)不那么可预测。尤其是应用不靶向方法的应用,例如小的RNA测序和转录组学,以进行彻底和全面的风险评估。