蛋白质的翻译后修饰(PTM)在其功能和可行性中起着至关重要的作用。这些修饰会影响蛋白质折叠,信号传导,蛋白质 - 蛋白质相互作用,酶活性,结合亲和力,聚集,降解等等。迄今为止,已经描述了超过400种PTM,代表了远远超出遗传编码氨基酸的化学多样性。这种修饰对蛋白质的成功设计构成了挑战,但也代表了使蛋白质工程工具箱多样化的主要机会。为此,我们首先训练了人工神经网络(ANN),以预测十八种最丰富的PTM,包括蛋白质糖基化,磷酸化,甲基化和脱氨酸。在第二步中,这些模型是在计算蛋白建模套件Rosetta中实现的,该模型允许与现有协议的灵活组合来建模修饰的位点并了解它们对蛋白质稳定性和功能的影响。最后,我们开发了一种新的设计协议,该协议可以最大化或最大程度地减少修改特定站点的预先指定的概率。我们发现,基于ANN预测和基于结构的设计的这种组合可以使现有和引入新颖PTM的修改。我们工作的潜在应用包括但并不包括对表位的聚糖掩盖,从而加强了通过phos-odylation加强蛋白质 - 蛋白质相互作用,还可以保护蛋白质免受脱氨基责任的影响。我们的作品为Rosetta的蛋白质工程工具箱添加了新颖的工具,该工具允许PTM的理性设计。这些应用对于设计新蛋白质治疗剂的设计尤其重要,在这种蛋白质疗法的设计中,PTM可以彻底改变蛋白质的治疗特性。
通用量子计算和量子模拟需要多量子比特架构,具有精确定义、稳健的量子比特间相互作用,以及局部可寻址性。这是一个尚未解决的挑战,主要是由于可扩展性问题。这些问题通常源于对量子比特间相互作用的控制不佳。分子系统是实现大规模量子架构的有前途的材料,因为它们具有高度的可定位性和精确定制量子比特间相互作用的可能性。最简单的量子架构是双量子比特系统,可以使用它实现量子门操作。为了可行,双量子比特系统必须具有较长的相干时间,量子比特间相互作用必须定义明确,并且两个量子比特还必须在相同的量子操纵序列中单独寻址。本文介绍了对氯化三苯甲基有机自由基的自旋动力学的研究结果,特别是全氯三苯甲基 (PTM) 自由基、单官能化 PTM 和双自由基 PTM 二聚体的自旋动力学。在低于 100 K 的所有温度下,都发现了高达 148 μ s 的超长集合相干时间。证明了双自由基系统中的双量子比特和单个量子比特可寻址性。这些结果强调了分子材料在量子架构开发方面的潜力。
癌症仍然是欧盟医疗保健系统最大的挑战之一。早期检测和诊断大大增加了成功治疗和生存的前景。学术界和迅速增长的癌症诊断和生物传感器部门迫切需要熟练熟练开发改进的筛查技术的研究人员,这可以为影响癌症生存提供主要机会。然而,开发具有所需灵敏度,可靠性和技术形式的多种癌症早期检测的测定,直到最近才出现,并且面临着重大的研发挑战。strim将培训一批研究人员在多学科科学,生物信息学,技术,社会,临床和健康经济技能中提供全面的生物电动工具,用于癌症筛查,快速,准确,准确,敏感和利用高级分子受体和纳米机器人的含量调整的工具和纳米机构的原理 - 构成了异常的原理(用于检测异常的核心)。酸作为尖端的生物流体标记物,用于早期检测癌症。越来越多的证据表明,PTM在人类癌症中起着重要作用,并且可能对癌症类型高度特异。专注于基因组和蛋白质组学PTM生物标志物将是一种改变游戏规则的策略,用于提高早期癌症检测率,效率和人群健康。
描述翻译后修饰(PTM)对于生物药物的结构,稳定性和功能至关重要,尤其是基于蛋白质的疗法,例如单克隆抗体,酶和激素。常见的PTM包括糖基化,磷酸化,氧化,脱氨酸等,每一种都会显着影响药物的功效,免疫原性和药代动力学。在生物制药的开发和生产过程中,准确监测和量化这些修饰的能力对于质量控制至关重要。质谱(MS)基于多属性监控(MAM)已成为PTMS综合,高分辨率分析的强大工具,比传统方法具有显着优势。
铁凋亡是一种以氧化应激和铁依赖性方式调节细胞死亡的新兴形式,主要是由活性氧(ROS)过量产生引起的。操纵铁铁作用已被认为是抑制肝肿瘤生长的有前途的治疗方法。然而,肝癌抗铁毒性的抗性发展在癌症治疗中构成了重大挑战。翻译后修饰(PTMS)是关键的酶促催化反应,可以共价调节蛋白质构象,稳定性和细胞活性。此外,PTM在各种生物学过程中扮演关键作用,并在包括铁质吞噬作用的各种生物学过程中发挥作用。重要的是,与铁凋亡有关的关键PTM调节剂已被确定为癌症治疗的潜在靶标。近年来,已经对两种蛋白质SLC7A11,SLC7A11,GPX4的PTMS功能进行了广泛研究。本综述将总结PTM在肝细胞相关蛋白中在肝细胞癌(HCC)治疗中的作用。
针对包括癌症在内的各种疾病的广义治疗策略是耗尽或灭活有害蛋白质靶标。各种形式的蛋白质或基因沉默分子,例如,小分子抑制剂,RNA干扰(RNAI)和microRNA(miRNA)已用于可药物测定靶标。在过去几年中,已开发出靶向蛋白质降解(TPD)方法来直接降解候选蛋白质。在TPD方法中,靶向嵌合体(Protac)的蛋白水解已成为通过泛素 - 蛋白酶体系统选择性消除蛋白质的最有希望的方法之一。protacs以外,具有潜在治疗用途的TPD方法包括内部介导的蛋白质敲低和三方基序21(TRIM-21)介导的Trim-Awa。在这篇综述中,总结了蛋白质敲低的方法,它们的作用方式以及它们比常规基因敲低方法的优势。在癌症中,与疾病相关的蛋白质功能通常通过特定的翻译后修饰(PTM)执行。 在靶蛋白的PTM形式的直接敲低中突出了修剪的作用。 此外,还讨论了各种疾病中TPD方法的应用挑战和前瞻性临床使用。在癌症中,与疾病相关的蛋白质功能通常通过特定的翻译后修饰(PTM)执行。在靶蛋白的PTM形式的直接敲低中突出了修剪的作用。此外,还讨论了各种疾病中TPD方法的应用挑战和前瞻性临床使用。
DNA甲基化(DNAME)是一种表观遗传标记,其中包括CPG岛中胞质的修饰(5MC)。除了调节基因表达,烙印和沉默的寄生DNA元素的表征良好的作用外,DNAME的不正调还与多种疾病有关。有证据表明,dname不是独立的表观遗传标记,而是与组蛋白的翻译后修饰(PTM)密切相关。但是,检查5MC和PTM之间的直接关系受到无法建立直接机械链接的单独测定的相关分析。此外,测量5MC的传统方法依赖于DNA的苛刻的Bisulfite化学对话,DNA引入了DNA断裂和全身偏见。为了解决这些局限性,我们开发了一种靶向的酶甲基化测序(TEM-SEQ)方法,这是一种超敏感的多摩变基因组映射技术,可在表位定义的染色质特征下提供高分辨率的DNAME谱。重要的是,该测定法可以检查5MC与组蛋白PTM和/或染色质蛋白(CHAPS)之间的直接分子联系。
蛋白质组学是所有蛋白质的蛋白质,以及它们的细胞,组织,体液(例如血清/血浆或脑脊液)或各个基因组在给定时间点表达的整个生物体中的转化后修饰(PTM)。这可以扩展为包括对定义的刺激或疾病状态的蛋白质(和PTM)水平变化的深入定量分析。这些目标通常是通过样品分离技术(例如色谱方法和超高分辨率质谱法)(Nanolc-MS/ MS)的组合来实现的。蛋白质组学现在是一种标准的分析,非常有力的研究技术,可以在RWTH AACHEN的生物医学领域(生物化学,细胞生物学,分子医学,系统生物学等)中用于基本上进行的所有研究。)。
摘要:神经退行性疾病是无法治愈的,异质性和依赖年龄的疾病,挑战现代医学。A deeper understanding of the pathogenesis underlying neu- rodegenerative diseases is necessary to solve the unmet need for new diagnostic biomarkers and disease-modifying therapy and reduce these diseases' burden.特定的,翻译后的模式(PTMS)在神经变性中起着重要作用。Due to its proximity to the brain parenchyma, cerebrospinal fluid (CSF) has long been used as an indirect way to measure changes in the brain.质谱法(MS)分析的神经退行性疾病,重点是PTM,在生物标志物发现的背景下,已经改善并打开了场地,用于分析更复杂的矩阵,例如脑组织和血液。值得注意的是,磷酸化的tau蛋白,截短的α-突触核蛋白,APP和TDP -43,以及许多其他修饰,以MS的广泛特征。巨大的潜力是用于临床应用的特定病理PTM签名。本综述着重于参与神经退行性疾病的PTM模型蛋白质,并突出了基于MS的生物标志物发现中最重要和最新的突破。
抽象空间动力卫星(SPS)是在太空中利用太阳能的巨大航天器。由于规模巨大,巨大的质量和高力量,因此存在许多技术困难。对于GW SPS系统,太空中产生的电力将超过2 gW,太阳阵列的整个区域将是几平方公里。空间中的高功率发电,传输和管理成为一个巨大的挑战。在论文中,提出了MR-SPS概念的主要方案,并引入了两个重要的子系统,太阳能收集和转换(SECC),电力传输和管理(PTM)。SECC子系统包括五十个太阳能阵列。每个太阳能子阵列由十二个太阳阵列模块组成。每个太阳能阵列的面积约为0.12 km 2。太阳能阵列将电力传输到安装在MR-SPS主结构上的电缆,该电源通过100个中动力旋转接头。PTM子系统转换,传输和分发SECC子系统的输出电力。大部分电力传输到天线,并分布在天线中。剩余的电力将传输并分配给服务设备以进行SPS的操作。采用了分布式和集中式高压PTM的混合,以满足SPS上电动设备电源的需求。分析了典型的空间环境会影响高功率电动系统。需要研究和解决关键技术,包括高较高的,长寿的薄膜GAAS PV电池,超大型 - 高电压(500 V)太阳能阵列,高功率导电旋转式关节,超高电压(20 kV)电缆(20 kV)电缆,高较高的电池,高较高的乘积,较高的平台,较高的速度,以及较高的速度和较高的转换,以及及好的转换,以及。