使用密码学进行安全通信如今已成为社会不可或缺的基础设施。安全密钥管理对于密码学至关重要,但在合法所有者使用故障注入攻击等技术以物理访问方式攻击设备的恶劣环境下,密钥管理尤其具有挑战性。业界已将密码学所需的一切都封装在独立的密码模块中来解决这一问题,即使是合法用户也无法篡改。然而,设计安全的密码模块是一项具有挑战性的任务,研究人员已经研究了二十多年的新攻击和对策。物理不可克隆函数 (PUF) 是一种相对较新的密码模块原语,它利用半导体芯片中的工艺变化来生成设备唯一标识符 [6]。通过将 PUF 与安全纠错技术相结合,我们可以实现仅在芯片开启后出现的安全密钥存储 [2],这为抵御逆向工程攻击提供了额外的安全保障 [12]。另一项与故障注入攻击密切相关的研究是信号注入攻击,它利用以下方式破坏模拟域中的数据完整性:
• 标准化计划可通过 MAPI 响应中的“design_type”字段识别。值为 DESIGN1 、 DESIGN2 、 DESIGN3 、 DESIGN4 或 DESIGN5 表示标准化计划。值为“NOT_APPLICABLE”表示非标准计划。 • 标准化计划可通过计划属性 PUF 中的“DesignType”字段识别。值为“设计类型 1”、“设计类型 2”或“设计类型 3”表示标准化计划。值为“不适用”表示非标准计划。
boot procedure • On Chip OTP based root keys and flash-based code signing keys • Three independent OTP memories, 4 Kbytes each • On Chip Physically Unclonable Function (PUF), TRNG • Multiple message digest support: MD5, SHA-1, SHA-2 (224-bit, 256-bit), AES-CMAC, XCBC-MAC, CBC-MAC • Anti-rollback for firmware基于图像版本和安全版本号(SVN)的二进制文件•HROT(信任的硬件根)•使用OpenSSL的加密卸载•加密闪光灯•证明和AC-Rot和SPDM的AC-ROT•安全固件更新•安全固定•安全配置•安全制造
涉及机密性,完整性和身份验证的所有安全解决方案的基石是密码学。Synopsys' Cryptography IP including symmetric and hash cryptographic engines, Public Key Accelerators (PKAs), True Random Number Generators (TRNGs) and Physical Unclonable Function (PUF), are silicon-proven, standards-compliant solutions providing the essential building blocks of secure systems.The hardware and software security implementations are easily configured, cover a wide spectrum of size and performance combinations, and are available in different architectures, such as look-aside or flow-through.每个加密核心可以用作安全协议加速器和嵌入式安全模块的构件。
与边缘相关的应用程序。此外,关于量子计算商业化的时间表正在进行讨论,关于量子计算的商业化的时间表有所不同。量子计算机有能力快速损害保护全球数据和基础架构的很大一部分的当前加密标准。考虑到硬件过渡通常至少需要5到10年,美国国家标准技术研究所(NIST)已实施了量词后加密术(PQC)标准,以减轻与量子计算相关的网络安全风险。此过渡为我们的基于PUF的解决方案提供了重要的机会,包括我们新推出的PQC
摘要 — 可扩展量子计算的前景正在密码学和安全领域引起重大变革。在这篇前瞻性论文中,我们回顾了实现大规模量子计算的进展。我们进一步总结了现有密码原语面临的迫在眉睫的威胁。为了应对这些挑战,人们正在努力实现新的密码原语的标准化,即后量子密码学 (PQC)。我们讨论了定义不同类别的 PQC 候选的底层数学问题,以及它们对对手访问大型量子计算机的抵抗力。与此研究线索并行的是,几个经典的密码原语也被移植到量子世界。我们在此背景下讨论了量子密钥分发 (QKD)、物理不可克隆函数 (PUF) 和真随机数生成器 (TRNG)。对于这些实现,我们对由此产生的与实现相关的漏洞进行了预览。
患有严重运动障碍(如脑瘫或闭锁综合征)的人通常通过具有单个开关输入的增强和替代通信 (AAC) 设备进行交流 [13、30、42]。用户可以通过按下按钮、释放一股空气或眨眼等方式控制开关的激活时间 [3、14、15]。最常见的是,这些开关激活(以下称为“点击”)用作扫描界面的输入 [52、54]。图形用户界面依次突出显示不同的选项;当开关被激活时,界面会选择突出显示的选项。但即使对于中等数量的选项,按顺序突出显示每个选项也可能是低效的。虽然一种称为行列扫描的流行变体效率更高,但它要求选项以网格排列。计算机用户经常需要在未排列在网格中的选项中进行选择;例如在绘图、游戏和网页浏览中。1
研发技术集成电路设计:• 带有 PMU 和 EHU 的 MCU 的开发• 机器学习在 IC 布局中的应用• 印刷、可重构、自修复、无电池、柔性、纸基、生物、生物相容性、液体、瞬态、可食用和表皮电子产品的开发• 关键技术的开发• 为更多摩尔应用开发逻辑核心设备、DRAM、Flash 和 NVM 技术• 新兴存储设备的开发,包括 FeRAM、MRAM、CBRAM、OxRAM、聚合物存储器和基于 DNA 的海量存储设备• 新型逻辑设备的开发,包括 SpinFET、Neg-C FET、Mott FET、NEMS 和拓扑绝缘体• 为超越摩尔 (MtM) 应用开发超越 CMOS 设备,包括 PUF 和 RNG• 新型架构的开发,包括 GAA 设备、3D 堆叠以及 CMOS 与超越 CMOS 的共集成
摘要 —近年来,半导体行业将制造外包给低成本但不一定值得信赖的代工厂。这种无晶圆厂商业模式面临着新的安全挑战,包括盗版和生产过剩。一种防止未经授权产品运行的经过充分研究的解决方案是逻辑加密,其中使用只有设计人员知道的密钥对芯片进行加密。然而,大多数逻辑加密解决方案都容易受到密钥一致性和探测攻击。在本文中,我们首先提出 GSAT,一种对使用 SAT 模型的现有 IC 特定逻辑加密方案的全局攻击,它可以有效解密可插入所有加密 IC 的隐藏全局密钥。接下来,我们提出了一种高度安全且低成本的补救措施,称为 SPLEnD:基于强 PUF 的逻辑加密设计。传统的 IC 特定加密方案容易受到 GSAT 攻击,而 SPLEnD 不仅可以有效抵抗 GSAT,而且还平衡了安全性和效率。
摘要 - 该论文引入了针对资源约束物联网(IoT)环境量身定制的轻巧,有效的键合功能,利用了Parabola Chaotic Map的混乱属性。通过将混沌系统的固有不可预测性与简化的加密设计相结合,提出的哈希功能可确保可靠的安全性和低计算开销。通过基于SRAM初始值将其与物理不封次函数(PUF)集成来进一步增强该函数,该功能可作为设备特异性键的安全且耐篡改的来源。对ESP32微控制器的实验验证证明了该函数对输入变化,特殊统计随机性以及对加密攻击的抗性的高度敏感性,包括碰撞和差分分析。在不同条件下,在关键产生中,平均比重变化的概率接近理想的50%和100%的可靠性,该系统解决了关键的物联网安全挑战,例如克隆,重播攻击和篡改。这项工作贡献了一种新颖的解决方案,该解决方案结合了混乱理论和基于硬件的安全性,以推动物联网应用程序的安全,高效和可扩展的身份验证机制。
