计划委员会正在寻求有关侧渠道分析和其他实施攻击的各个方面的原始论文以及高效且安全的实施。您被邀请参加并向Cosade'24提交贡献。The workshop's submission topics include, but are not limited to: • Implementation attacks & countermeasures: Side-channel analysis, fault-injection attacks, probing and read-out, hardware trojans, cloning and counterfeiting, side-channel or fault-injection based reverse engineering, attacks or countermeasures based on machine learning methods • Efficient and secure HW/SW implementations: Efficient and secure implementations of cryptographic blocks including post-quantum cryptography, lightweight cryptography, random number generators, physical unclonable functions (PUFs), symmetric cryptography, hash functions, leakage-resilient cryptography, fault-resistant and tamper-detection designs, white-box cryptography • Hardware-intrinsic security: Foundations and practical aspects of hardware-intrinsic security, use of instance-specific and process-induced variations in用于密码学的电子设备,新颖的PUF设计,硬件内部安全威胁,供应链保护•测量设置,评估平台和开放基准:实际实施和比较物理攻击的实施和比较,包括测量设置的描述,包括对物理攻击的物理攻击和自动分析工具的测试平台的描述,包括测试平台,以•开放式攻击和自动分析工具:设计自动化和工具,评估工具,特定领域的安全性分析,例如物联网,医疗,汽车,工业控制系统,5G等。
剪接是去除前 mRNA 片段(称为内含子)同时将片段(称为外显子)连接在一起形成成熟 mRNA 的过程 1 。可变剪接是一种现象,其中基因的不同外显子片段剪接在一起形成具有不同序列的成熟 mRNA,大大扩展了单个基因编码的蛋白质库。可变剪接过程深深嵌入基因调控网络中,并控制 90% 以上的人类基因的基因异构体表达 2 。鉴于其普遍性,RNA 剪接失调与许多疾病有关也就不足为奇了 3 – 5 。RNA 测序是一种强大的工具,可用于“读取”转录组并识别不同细胞类型、条件和疾病中可变剪接的变化 2、5、6。但是,缺乏一种可扩展的工具来精确且可逆地“编写”可变剪接。尽管针对特定基因异构体进行降解的异构体特异性 RNAi 或异构体特异性 cDNA 过表达可用于扰乱异构体水平 7、8,但可能无法保持靶基因的整体表达水平。虽然剪接转换反义寡核苷酸 (ASO) 可有效扰乱剪接,甚至已进入临床试验 9,但它们的成本对于大规模研究而言过高,并且需要筛选许多设计以确定有效的靶序列。此外,由于 ASO 本质上是瞬时的,因此它们不适用于需要稳定或可诱导表达的用例。RNA 调节蛋白与异源 RNA 结合结构域的融合,例如 Pumilio/PUF、MS2 外壳蛋白 (MCP)、PP7 外壳蛋白 (PCP) 和 λ N,已经允许人工调节 RNA 过程 10 – 15。例如,通过工程化的 PUF 结构域将富含丝氨酸或富含甘氨酸的结构域束缚到外显子上,分别诱导它们的包含或排除12。然而,这些人工 RNA 效应分子需要蛋白质工程或在靶 RNA 中插入人工标签,并且依赖于短识别序列,这限制了靶向灵活性和特异性。遗传学和表观遗传学领域极大地受益于基于 RNA 引导的 DNA 靶向 CRISPR-Cas 系统的技术的爆炸式增长 16。我们,以及其他一些人,已经成功地实施了分子工具来修改目标 DNA 位点的遗传序列或表观遗传状态 17-25。CRISPR 介导的 DNA 水平基因编辑方法已被用于扰乱剪接(在剪接位点进行碱基编辑/插入缺失或切除整个外显子)19-21。然而,由于共享同一 DNA 片段的 DNA 顺式调控元件(例如转录因子结合位点)可能受到干扰,因此这些方法可能会产生混淆效应。此外,使用 CRISPR 介导的 DNA 缺失或突变方法很难促进外显子的插入。首次证明了使用 CRISPR 靶向 RNA 的激动人心的前景,即将最常用的 DNA 靶向 SpCas9 转化为 RNA 核酸酶“ RCas9 ”,并添加了 PAMmer - 一种寡核苷酸,当与靶 RNA 结合时,会模拟 SpCas9 结合所需的原型间隔区相邻基序 (PAM) 19 。虽然将 RCas9 靶向重复序列不需要 PAMmer 26 ,但重复序列仅占所有 RNA 顺式调控元件的一小部分。继 RCas9 首次报道之后,其他 CRISPR/Cas9 系统也被发现可在体外与单链 RNA 结合 27 、 28 ,但缺乏它们在哺乳动物细胞中体内 RNA 结合的证据。最近发现了来自细菌 CRISPR 系统的 RNA 引导的 RNA 核酸酶 29 – 31 。它们对哺乳动物细胞的适应不仅允许可编程的 RNA 降解 29、31、32,而且还可用于设计新功能,例如 RNA 序列编辑 30、活细胞 RNA 成像 32 和诊断 33。特别是,CasRx 是从 Ruminococcus flavefaciens 中分离出来的最近鉴定出的 IV-D 型 CRISPR-Cas 核糖核酸酶
征集创新和原创论文的主题领域包括(但不限于):模拟:具有模拟主导创新的电路;放大器、比较器、振荡器、滤波器、参考电路;非线性模拟电路;数字辅助模拟电路;传感器接口电路;MEMS 传感器/执行器接口、10nm 以下技术的模拟电路。数据转换器:奈奎斯特速率和过采样 A/D 和 D/A 转换器;嵌入式和特定应用的 A/D 和 D/A 转换器;时间到数字转换器;创新和新兴的转换器架构。数字电路、架构和系统*:微处理器、微控制器、应用处理器、图形处理器、汽车处理器、机器学习 (ML) 和人工智能 (AI) 处理器以及片上系统 (SoC) 处理器的数字电路、架构、构建模块和完整系统(单片、小芯片、2.5D 和 3D)。用于通信、视频和多媒体、退火、优化问题解决、可重构系统、近阈值和亚阈值系统以及新兴应用的数字系统和加速器。用于处理器的芯片内通信、时钟分配、软错误和容错设计、电源管理(例如稳压器、自适应数字电路、数字传感器)和数字时钟电路(例如 PLL、DLL)的数字电路。数字 ML/AI 系统和电路,包括近内存和内存计算以及针对新 ML 模型(如 Transformer、图形和脉冲神经网络以及超维计算)的硬件优化。图像传感器、医疗和显示:图像传感器;视觉传感器和基于事件的视觉传感器;汽车、激光雷达;超声波和医学成像;可穿戴、可植入、可摄取设备;生物医学传感器和 SoC、神经接口和闭环系统;医疗设备;微阵列;体域网络和身体耦合通信;用于医疗和成像应用的机器学习和边缘计算;显示驱动器、触摸感应;触觉显示器;用于 AR/VR 的交互式显示和传感技术。存储器:用于独立和嵌入式应用的静态、动态和非易失性存储器;存储器/SSD 控制器;用于存储器的高带宽 I/O 接口;基于相变、磁性、自旋转移扭矩、铁电和电阻材料的存储器;阵列架构和电路,以改善低压操作、降低功耗、可靠性、性能改进和容错能力;内存子系统内的应用特定电路增强、用于 AI 或其他应用的内存计算或近内存计算宏。电源管理:电源管理、电源输送和控制电路;使用电感、电容、和混合技术;LDO /线性稳压器;栅极驱动器;宽带隙(GaN / SiC);隔离和无线电源转换器;包络电源调制器;能量收集电路和系统;适用于汽车和其他恶劣环境的强大电源管理电路;LED驱动器。射频电路和无线系统**:用于接收器、发射器、频率合成器、射频滤波器、收发器、SoC和包含多个芯片的无线 SiP 的射频、毫米波和 THz 频率的完整解决方案和构建模块。创新电路、系统、设计技术、异构封装解决方案等,适用于既定的无线标准以及未来系统或新应用,例如传感、雷达和成像,以及提高频谱和能源效率的应用。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。RF 电路和无线系统**:用于接收器、发射器、频率合成器、RF 滤波器、收发器、SoC 和包含多个芯片组的无线 SiP 的 RF、毫米波和 THz 频率的完整解决方案和构建模块。创新电路、系统、设计技术、异构封装解决方案等,适用于既定的无线标准以及未来系统或新应用,例如传感、雷达和成像,以及那些可提高频谱和能源效率的应用。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。RF 电路和无线系统**:用于接收器、发射器、频率合成器、RF 滤波器、收发器、SoC 和包含多个芯片组的无线 SiP 的 RF、毫米波和 THz 频率的完整解决方案和构建模块。创新电路、系统、设计技术、异构封装解决方案等,适用于既定的无线标准以及未来系统或新应用,例如传感、雷达和成像,以及那些可提高频谱和能源效率的应用。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。以及提高频谱和能源效率的芯片。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。以及提高频谱和能源效率的芯片。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。硅电子-光子集成;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。硅电子-光子集成;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。
TAINAN, Taiwan and SHENZHEN, China – January 2, 2024 – Himax Technologies, Inc. (Nasdaq: HIMX) (“Himax” or “Company”), a leading supplier and fabless manufacturer of display drivers and other semiconductor products, today announced that the Company, in collaboration with Seeed Studio, the IoT hardware partner providing services that empower developers to implement their projects and products for digital转换,将推出尖端电池供电的端点AI视觉处理模块,Grove Vision AI模块V2,CES2024。此处理模块以Himax的WiseEye2 AI处理器HX6538(“ WE2”)为特色,以其极低的功耗和出色的AI推理性能而闻名,具有广泛和广泛的AI开发功能。在行业的最前沿,处理模块是一个强大的端点AI开发平台,为将来的AI应用程序铺平了道路。Himax的Wiseeye TM智能图像传感解决方案已在各种端点AI应用中很好地采用。新一代WE2 AI处理器是建立在其前身芯片We1的成功之上的。WE2利用高级皮层M55和Ethos U55体系结构可提供32倍的推理速度,而与WE1相比,推理速度和能源效率高50倍。这些增强功能允许WE2在保持超低功耗的同时启用更多端点AI计算要求。WE2具有多层电源管理结构,并结合了动态电压频率缩放(DVFS)技术,以实现微型水平的功耗。WE2还包含了令人印象深刻的安全功能,包括确保每个芯片都具有独特身份的物理不荡情功能(PUF)安全机制,从而减轻了未经授权的访问和伪造的风险,从而增强了芯片安全性。此外,内置的RSA和ECC硬件加密和解密引擎实现了毫秒级快速安全启动,进一步确保了安全有效的数据传输。作为AI支持的微处理器领域的先驱,WE2提供了出色的AI推论功能,具有超值功耗超过传统MCU的规格。这些优点使WE2成为Seeed Studio端点AI视觉处理模块的理想选择。配备了WE2的SEED Studio Endpoint AI模块是端点AI设备的全面开发平台,可满足软件和硬件的各种开发需求。在硬件开发方面,该模块支持MIPI CSI摄像机和麦克风,以帮助收集图像和声音数据。此外,它还提供了通用界面设计,可支持众多IO接口,使开发人员可以在同一接口上连接不同类型的外部设备,并大大增强了产品开发的灵活性和便利性。用于软件开发,Seeed Studio的端点AI视觉处理模块不仅提供了数十个预训练的AI模型,而且还具有Edgelab AI工具链。这个功能强大的工具链使用户可以根据其特定要求量身定制AI模型培训,从而实现更多个性化的AI软件开发。在系统级硬件和软件互操作性和协作方面,Seeed Studio处理模块可以与广受欢迎的Seeed的Universal Xiao Microcontroller开发板系列无缝集成。组合可以将处理模块与无代码AI方法集成到各种家用电器中,从而使家用设备中的AI技术更加有效。
