摘要 呼吸是机体的重要生理过程,对维持人体健康起着至关重要的作用。基于可穿戴压电纳米纤维的呼吸监测因自供电、高线性、非侵入性和便捷性而受到广泛关注。但传统压电纳米纤维灵敏度有限,机电转换效率低,难以满足医疗和日常呼吸监测要求。这里我们提出了一种具有普遍适用性的高灵敏度压电纳米纤维,其特征是聚偏氟乙烯(PVDF)和碳纳米管(CNT)的同轴复合结构,记为PS-CC。在阐明渗透效应增强机制的基础上,PS-CC表现出优异的传感性能,灵敏度高达3.7 V/N,机电转换响应时间为20 ms。作为概念验证,纳米纤维膜无缝集成到面罩中,有助于准确识别呼吸状态。在一维卷积神经网络(CNN)的帮助下,基于PS-CC的智能口罩可以识别呼吸道和多种呼吸模式,分类准确率高达97.8%。值得注意的是,这项工作为监测呼吸系统疾病提供了有效的策略,并为日常健康监测和临床应用提供了广泛的实用性。
抽象呼吸是身体的关键生理过程,在维持人类健康中起着至关重要的作用。可穿戴压电纳米纤维的呼吸监测引起了极大的关注,因为它的自力力量,高线性,非侵入性和便利性。但是,由于其机电转换效率低,传统压电纳米纤维的敏感性有限,因此很难满足医疗和每日呼吸监测要求。在这里,我们提出了一种普遍适用的,高度敏感的压电纳米纤维,其特征在于聚偏二氟化物(PVDF)和碳纳米管(CNT)的同轴复合结构,该结构称为PS-CC。基于阐明渗透效应的增强机制,PS-CC表现出出色的感应性能,高灵敏度为3.7 V/N,快速响应时间为20 ms,用于机电转换。作为概念验证,纳米纤维的膜无缝整合到面膜中,从而促进了对呼吸状态的准确识别。在一维卷积神经网络(CNN)的协助下,基于PS-CC的智能面具可以识别呼吸道和多种呼吸模式,其分类精度高达97.8%。值得注意的是,这项工作为监测呼吸道疾病提供了有效的策略,并为日常健康监测和临床应用提供了广泛的实用程序。
摘要:欧盟对全氟烷基和多氟烷基物质 (PFAS) 的全类别限制提案预计将影响广泛的商业领域,包括使用聚合物和低分子量 PFAS 的锂离子电池 (LIB) 行业。PFAS 限制档案目前指出,几乎没有证据表明 LIB 中有可行的 PFAS 替代品。在本期观点中,我们总结了同行评审的文献以及来自学术界和工业界的专家意见,以验证缺乏替代品的说法的合法性。我们的评估仅限于电极和电解质,这占了 LIB 电池中 PFAS 的最关键用途。我们已经确定了已经提供或正在开发不含 PFAS 的电极和电解质材料的公司。还有迹象表明至少有另一家公司正在开发不含 PFAS 的电解质,但没有关于正在提出的替代化学品的信息。我们的审查表明,从技术上讲,制造不含 PFAS 的电池用于电池应用是可行的,但目前市场上还没有成熟的不含 PFAS 的解决方案。成功替代 PFAS 需要在电池性能、与危险材料和化学品相关的环境影响以及经济考虑之间取得适当的平衡。关键词:氟聚合物、PVDF、可再生能源、绿色能源转型、阴极、粘合剂、电解质盐、电解质添加剂■简介
Colombes,2022年5月3日Arkema,CNRS,Claude Bernard Lyon 1 University和CPE Lyon正在结合其专业知识,以设计未来的电池,便携式能源需求的越来越重要的部分将基于移动能源存储设备,例如Lithium-ion电池。Arkema,CNRS [中心德拉·雷·雷·科学(Central De La Recherche Scientifique)(法国国家科学研究中心)],里昂1大学和CPE Lyon [écolesupérieurede chimie,Gredsique,Gredlectique,Gredlectronique de Lyon(Grande de Lyon)(Grande'Chemist of Chemistry of Chemistion of Chemistry of Chemistion of Chemistion of Chemistry,Threntics和Electronics)]。 该联合实验室将专门针对基于氟聚合物的新高性能材料的设计,该材料将在后代的电池中使用。 使用电动汽车,智能手机和笔记本电脑,对移动储能设备的需求不断增长。 这种需求主要由锂离子电池满足。 它们由两个电极组成,这些电极由于存在分离剂而不会相互接触,它们都沐浴在电解质溶液中。 不同的荧光聚物(Kynar®PVDF所属的一个分子家族)提供了出色的成本 - 性能比例,作为阴极粘合剂和分离剂涂层,以提高其性能:能量密度,功率,功率,储能,寿命,可靠性,可靠性,寿命,寿命,寿命,催化,催化,材料实验室在这些方面的研究多年,这是对这些政策的整合,而不是在这些方面进行的,而这些杂志的范围比这是多年的,而不是这些杂志的范围,而不是这些杂种,而不是在这些方面进行的,而不是在这些方面进行的,那么这些杂志的范围是众所周知的,而不是这些杂货,而不是在这些方面进行的,那么多年的研究是,众所周知,众所周知,更多的杂志,多年的研究,多年来的研究, CNRS,Claude Bernard Lyon 1 University和CPE Lyon,在一个新的联合实验室项目中:IHUB Poly-9。 这种聚合物家族在化学和电化学上都非常稳定。Arkema,CNRS [中心德拉·雷·雷·科学(Central De La Recherche Scientifique)(法国国家科学研究中心)],里昂1大学和CPE Lyon [écolesupérieurede chimie,Gredsique,Gredlectique,Gredlectronique de Lyon(Grande de Lyon)(Grande'Chemist of Chemistry of Chemistion of Chemistry of Chemistion of Chemistion of Chemistry,Threntics和Electronics)]。该联合实验室将专门针对基于氟聚合物的新高性能材料的设计,该材料将在后代的电池中使用。使用电动汽车,智能手机和笔记本电脑,对移动储能设备的需求不断增长。这种需求主要由锂离子电池满足。它们由两个电极组成,这些电极由于存在分离剂而不会相互接触,它们都沐浴在电解质溶液中。不同的荧光聚物(Kynar®PVDF所属的一个分子家族)提供了出色的成本 - 性能比例,作为阴极粘合剂和分离剂涂层,以提高其性能:能量密度,功率,功率,储能,寿命,可靠性,可靠性,寿命,寿命,寿命,催化,催化,材料实验室在这些方面的研究多年,这是对这些政策的整合,而不是在这些方面进行的,而这些杂志的范围比这是多年的,而不是这些杂志的范围,而不是这些杂种,而不是在这些方面进行的,而不是在这些方面进行的,那么这些杂志的范围是众所周知的,而不是这些杂货,而不是在这些方面进行的,那么多年的研究是,众所周知,众所周知,更多的杂志,多年的研究,多年来的研究, CNRS,Claude Bernard Lyon 1 University和CPE Lyon,在一个新的联合实验室项目中:IHUB Poly-9。 这种聚合物家族在化学和电化学上都非常稳定。不同的荧光聚物(Kynar®PVDF所属的一个分子家族)提供了出色的成本 - 性能比例,作为阴极粘合剂和分离剂涂层,以提高其性能:能量密度,功率,功率,储能,寿命,可靠性,可靠性,寿命,寿命,寿命,催化,催化,材料实验室在这些方面的研究多年,这是对这些政策的整合,而不是在这些方面进行的,而这些杂志的范围比这是多年的,而不是这些杂志的范围,而不是这些杂种,而不是在这些方面进行的,而不是在这些方面进行的,那么这些杂志的范围是众所周知的,而不是这些杂货,而不是在这些方面进行的,那么多年的研究是,众所周知,众所周知,更多的杂志,多年的研究,多年来的研究, CNRS,Claude Bernard Lyon 1 University和CPE Lyon,在一个新的联合实验室项目中:IHUB Poly-9。这种聚合物家族在化学和电化学上都非常稳定。该实验室与阿克马(Arkema)在皮埃尔·贝尼特(PierreBénite)网站上新创建的卓越中心合作进行了合作。 “我对与Arkema的这种合作伙伴关系感到高兴,这是漫长的合作历史的一部分。我们正在遵守一项与各种规模的公司一起发展联合实验室的政策,正如已经存在的200多个联合实验室所证实的。商业与学术界之间这种雄心勃勃的合作形式是基于基础研究,以应对重大工业挑战。” CNRS总裁兼首席执行官Antoine Petit。“这个实验室是Arkema与CNRS之间的长期合作的另一个联合倡议。这是Arkema持续致力于与学术界建立创新和伙伴关系的持续承诺的完美例证。这使我们能够利用最佳专业知识,以在电池和氢等战略领域开发可持续的高性能材料。所涉及的科学家对聚偏二氟乙烯(PVDF)及其共聚物特别感兴趣。它们的合成发生在分散在水中的培养基中,需要高压超过100 bar的压力,CP2M受益的专业知识,因为它具有反应器能够完全安全地达到这些压力。与Arkema的合作主要用五个将研究用于能源领域的荧光聚合物的合成和处理的博士学位。这包括由Auvergne-Rhône-Alpes地区资助的论文,以及由公司资助的三个Cifre [Convention Industrielle de Mortation Par la Recherche(工业研究培训培训培训)],以及公司在50英里的设备上购买的设备,专门用于iHub Poly-9 in the Porlesises porders porsiss cp2m cp2m。
evs/phevs电动汽车/插电式混合动力电动汽车FMECA故障模式,效果和关键分析SOC的电荷型HEV混合动力汽车PHEV插件插件混合电动汽车BEV电池电动汽车IEA IEA国际能源ACEA ACEA欧洲汽车公司欧洲汽车制造商' lithium polymer SEI solid electrochemistry interphase IEC International Electrotechnical Commission TR Thermal runaway DSC differential scanning calorimeter ARC accelerated rate calorimetry C80 Calvet calorimeter SH self-heating XPS X-ray photoelectron spectroscopy TOF-SIMS Time Of Flight - Secondary Ion Mass Spectrometry NMR MAS Nuclear magnetic resonance Magic angle spinning XRD X射线衍射EPO EPO欧洲专利办公室PEO聚乙烯氧化物PVD物理蒸气沉积PEG聚乙烯甘油CMC CMC羧甲基纤维素磷酸铁磷酸铁含液含量LMC甲酸甲酯
锂硫(LI-S)电池的商业化面临着几个挑战,包括因氧化还原穿梭而导致阴极造成的阴极损失的较差,意外的体积膨胀和连续的硫。在这项研究中,我们通过在poly(Ether-thioureas)(Petu)和Poly(3,4-乙基二氧噻吩)之间的简单交联引入新型聚合物 - poly(pedot:pss)作为双面binder-binder-s batteries for li-s batteries for li-s batteries for li-s batteries for li s Batteries(depotes batteries as dive)与聚偏二氟化物(PVDF)相比,经过准备的PPTU表现出明显更高的电导率,促进了电化学反应。此外,PPTU表现出有效的锂多硫纤维吸附,从而通过抑制穿梭效应,从而改善了循环稳定性。我们通过使用同步加速器X射线断层扫描来监测细胞界面的形态变化来研究这种行为。具有PPTU粘合剂的细胞表现出显着的速率性能,所需的可逆性和出色的循环稳定性,即使在严格的弯曲和扭曲条件下也是如此。我们的工作代表了LI-S电池的功能性聚合物粘合剂开发的有希望的进展。2024年科学出版社和达利安化学物理研究所,中国科学院。由Elsevier B.V.和科学出版社出版。这是CC下的开放式访问文章(http://creati- vecommons.org/licenses/4.0/)。
•锂离子电池(LIB)在各种电子和车辆中的日益增长的使用引起了人们对关键组件(如钴和锂等关键组件的供应和回收)的关注。lib回收具有经济和环境利益,包括恢复有价值的金属以及预防将有毒物质释放到环境中。然而,电池回收导致气体排放和液体废物,其中含有有害和持续的化学物质,包括量化和多氟烷基物质(PFA)。LIB回收过程中PFA的命运非常有限,并且不太了解。•LIBS多个成分 - 电解质,锂盐,粘合剂和分离剂 - 涉及各种氟化化合物。氟化添加剂用于提高电化学性能并增强化学和热稳定性。•少于5%的用户被回收。大多数用过的液井都是垃圾填埋的,由于灰尘,沼气,渗滤液的释放而对空气,土壤,水,水,水。•下一代LIB,固态电池(SSB),由于其出色的安全性和更好的能量密度,因此对未来电池技术具有巨大的潜力。SSB还包括粘合剂和氟化聚合物固体电解质中的各种氟化化学物质。•我们的研究概述了无机和有机氟化的化合物,添加剂和(CO)LIBS和SSB中使用的(CO)聚合物,并专注于电池粘合剂的热处理,尤其是PVDF(聚乙烯二烯氟化物)。
D. Michelle Addington,哈佛大学,马萨诸塞州剑桥,建筑学;Yasuyuki Agari,大阪市立技术研究所,日本大阪城东区,聚合物共混物,功能分级 U.O。 Akpan,Martec Limited,加拿大新斯科舍省哈利法克斯,船舶结构的振动控制 Samuel M. Allen,麻省理工学院,马萨诸塞州剑桥,形状记忆合金,磁激活铁磁形状记忆材料 J.M. Bell,昆士兰科技大学,昆士兰州布里斯班,Windows Yves Bellouard,瑞士洛桑联邦理工学院机器人系统研究所,微型机器人,基于形状记忆合金的微型设备 Davide Bernardini,罗马大学“La Sapienza”,意大利罗马,形状记忆材料,建模 A. Berry,GAUS,加拿大魁北克省舍布鲁克谢尔布鲁克大学,船舶结构的振动控制 O. Besslin,GAUS,加拿大魁北克省舍布鲁克谢尔布鲁克大学,船舶结构的振动控制船舶结构 Mahesh C. Bhardwaj,Second Wave Systems,宾夕法尼亚州博尔斯堡,无损评估 Vivek Bharti,宾夕法尼亚州立大学,宾夕法尼亚州立大学公园,聚偏氟乙烯 (PVDF) 及其共聚物 Rafael Bravo,苏利亚大学,委内瑞拉马拉开波,带有压电执行器和传感器的桁架结构 Christopher S. Brazel,阿拉巴马大学,阿拉巴马州塔斯卡卢萨,生物医学传感 W.A. Bullough,谢菲尔德大学,英国谢菲尔德,流体机械 J. David Carlson,Lord Corporation,北卡罗来纳州卡里,马萨诸塞州
项目 LMO NMC111 LFP NMC532 NMC622 NMC811 NCA 正极活性材料 2.36 1.78 2.06 1.72 1.50 1.27 1.38 炭黑 0.05 0.04 0.04 0.04 0.03 0.07 0.03 石墨 0.80 0.90 1.05 0.88 0.89 0.92 0.90 粘结剂(PVDF) 0.07 0.08 0.06 0.05 0.05 0.09 0.05 铜 0.44 0.33 0.47 0.31 0.29 0.28 0.26 铝 0.24 0.19 0.26 0.18 0.16 0.16 0.15 电解质:LiPF6 0.08 0.06 0.10 0.06 0.06 0.06 0.05 电解质:碳酸乙烯酯 0.21 0.18 0.29 0.16 0.16 0.16 0.15 电解质:碳酸二甲酯 0.21 0.18 0.29 0.16 0.16 0.16 0.15 塑料:聚丙烯 0.04 0.03 0.05 0.04 0.03 0.03 0.02 塑料:聚乙烯 0.01 0.01 0.01 0.01 0.01 0.01 塑料:聚对苯二甲酸乙二醇酯 0.01 0.01 0.01 0.01 0.01 0.01 0.01 电池小计 4.50 3.78 4.70 3.61 3.33 3.21 3.17 组件部件(不含电池) 铜 0.01 0.01 0.01 0.01 0.01 0.01 铝 0.20 0.18 0.23 0.17 0.16 0.16 0.15 塑料:聚乙烯 0.00 0.00 0.00 0.00 0.00 0.00 绝缘材料 0.00 0.00 0.00 0.00 0.00 0.00 0.00 电子部件 0.02 0.02 0.02 0.02 0.02 0.02 0.02 小计: 模块部件(不含电池) 0.22 0.20 0.25 0.19 0.19 0.19 0.18 电池组部件(不含模块)(千克) 铜 0.00 0.00 0.00 0.00 0.00 0.00 铝 0.47 0.44 0.52 0.43 0.42 0.42 0.41 钢 0.03 0.03 0.04 0.03 0.02 0.03 0.02 绝缘材料 0.02 0.01 0.02 0.01 0.01 0.01 冷却剂 0.11 0.12 0.15 0.12 0.12 0.12 0.13 电子部件0.06 0.06 0.06 0.06 0.06 0.06 0.06 小计:包装部件(不含模块) 0.70 0.67 0.79 0.65 0.64 0.64 0.64
1硕士,科学与计算机研究学院,CMR大学,班加罗尔,卡纳塔克邦2 2号科学与计算机研究学院副教授,CMR大学,班加罗尔,卡纳塔克邦,卡纳塔克邦摘要,每天都有能源需求和环境问题的增加,需要可持续的替代方法。噪声污染一直是要担心的话题。因此,我们通过使用压电传感器将其转换为电能来利用噪声或声音。压电传感器使用压电效果将机械能将声波转化为电能。这项技术的潜在应用很多,包括从交通噪音,音乐甚至心跳收获能量。使用了压电能量收集传感器氟化物(PVDF)和锆甲酸铅(PZT)的研究。这些研究中实现的最大功率输出在0.77兆瓦至51.6兆瓦之间变化,具体取决于能量收割机的轮廓和所使用的声源的类型。使用压电传感器进行能源收集具有很大的潜力,可以从环境音源产生可再生能源。关键字:piezoelectric;聚偏二氟;铅锆钛酸铅;可再生能源;环境音源。引言压电材料自19世纪后期以来就以机械应力发电能力而闻名。最近,人们越来越关注使用压电传感器,从包括声波在内的环境机械振动中收集能量。在这项技术的帮助下,有可能提供可再生和可持续的能源,尤其是在噪声污染很高的城市环境中。压电能量收割机背后的基本概念是通过利用压电的材料将机械能(例如声波)转换为电能。当您施加压力(例如声波产生的振动)时,将产生电荷。该电荷可以被捕获并用于电动设备。最近的研究已研究了使用压电传感器从声波收集能量的潜力。这些查询涉及各种元素,例如选择压电材料的选择,能量收割机的构型以及声波的特征,涵盖了频率和振幅。这项研究的目的是微调压电能量收割机的设计以适合特定应用,例如从交通噪声,乐器甚至人体运动中提取能量。本质上,目的是为各种环境优化这些设备。更广泛的目标是建立压电传感器,作为从声波中收集能量的可靠方法,提供可持续和可再生能源。这具有巨大的希望,尤其是在有一个
