客户对电气系统弹性的担忧可能会推动落后太阳能存储(BTM PVESS)的早期采用,尤其是随着野火,飓风和其他气候驱动的电网风险变得更加明显。但是,由于缺乏数据和方法上的挑战,BTM PVESS的弹性益处尚不清楚,尤其是对于Resi Dentic客户而言,因此很难预测采用趋势。在本文中,我们开发了一种方法来对BTM PVESS的性能进行建模,以在各种客户类型,地理 /气候条件以及较长持续时间互动的破裂方案中提供备份功率,并考虑了整个构建备份和特定关键载荷的备份。我们结合了整个美国大陆的新颖,分解的最终用途负载曲线,并在时间和地理空间对齐太阳生成估算上。然后,我们实现PVESS调度算法来计算中断期间服务的负载量。我们发现,在一年中的任何一个月内,具有10 kWh的存储空间的PVESS可以在大多数美国县满足一组有限的关键负荷,尽管这种能力下降,只能满足86%的关键负荷,平均在所有县和几个月中平均供暖和冷却。在电热量很常见的冬季(美国东南部和西北部),以及夏季较大的冷却负荷(美国西南部和东南部)的冬季备用性能最低。哈里斯县温度设定点的差异对应于冬季备用性能的40%范围,夏季五角杆的范围为20%。冬季备份根据浸润率而变化约20%,而夏季的性能因中央空调系统的效率而近15%。经济计算表明,客户对PVESS的弹性价值必须很高,以激励采用这些系统。
客户对电力系统弹性的担忧可能会推动用户尽早采用电表后太阳能加储能 (BTM PVESS),尤其是在野火、飓风和其他气候驱动的电网风险变得更加明显的情况下。然而,由于缺乏数据和方法上的挑战,人们对 BTM PVESS 的弹性优势了解甚少,特别是对于住宅客户而言,这使得预测采用趋势变得困难。在本文中,我们开发了一种方法,以模拟 BTM PVESS 在为各种客户类型、地理/气候条件和长时间断电场景提供备用电源方面的性能,同时考虑整栋建筑备用和特定关键负载的备用。我们将美国大陆新颖的、分解的最终使用负载曲线与时间和地理空间一致的太阳能发电估计值相结合。然后,我们实施了 PVESS 调度算法来计算中断期间提供的负载量。我们发现,在一年中的任何月份,具有 10 kWh 存储容量的 PVESS 都可以满足大多数美国县的有限关键负载,但是当供暖和制冷被视为关键时,这种能力会下降到只能满足所有县和月份平均关键负载的 86%。在电热常见的冬季(美国东南部和西北部)和制冷负荷较大的地方(美国西南部和东南部),备用性能最低。冬季备用性能根据渗透率的不同大约有 20% 的变化,而夏季性能根据中央空调系统的效率不同有近 15% 的变化。哈里斯县的温度设定点差异对应冬季备用性能的 40% 范围和夏季性能的 20% 范围。经济计算表明,客户的 PVESS 弹性值必须很高才能促使客户采用这些系统。
该研究评估了电表后太阳能光伏加储能系统 (PVESS) 在各种地域、建筑类型和断电条件下提供关键负载或整栋建筑备用电源的性能。该研究还考虑了一组 10 次历史上的长时间停电事件,并评估了 PVESS 在这些特定事件期间提供备用电源的表现。该分析是伯克利实验室与国家可再生能源实验室合作开展的一系列研究中的第一项,研究内容是使用 PVESS 作为备用电源。这项初步研究旨在提供一组基准性能估计值并说明关键性能驱动因素。本叙述性摘要概述了分析方法、主要发现和未来工作机会。有关更多详细信息,请参阅完整报告。