1.0背景塑料废物管理(PWM)是印度的一个主要问题,在印度,城市化,工业化和经济增长导致塑料废物(PW)产生增加。新兴的人口和生活水平的改善仅加剧了这个问题。环境,森林和气候变化部(MOEF&CC)2011年通知塑料废物管理规则,并在2016年进行了修改,以确保印度的适当塑料废物管理。CPCB在O.A.中符合日期为10.09.20的Hon'ble NGT命令。编号247/2017,以违反PWM规则征收EC的政权。Hon'ble NGT命令日期为08.01.2021 Hon'ble指示:“ CPCB提出的EC和刑事行动制度可以由CPCB,州PCBS/PCC,州立PCC,州级监测委员会和所有其他有关当局及时实施。”Mo EF&CC最近通过通知,日期为2021年8月12日(附件I),已通知了PWM规则的四项修正案(Annexure-II),分别是2月16日,Annexure-II,分别为2022年2月16日(Annexure-III),&分别为2022年7月6日(Annexure-IV)。 根据规定的第9.2号计划,通过对日期为2月16日2月16日的PWM规则通知的计划-II,“中央污染控制委员会应为生产者,进口商和品牌所有者,回收者,终止过程的终止,在这些指南中的范围内,对环境赔偿的征收和收集的指南,以外的态度,以及这些指南的范围。 应根据需要更新环境补偿指南。已通知了PWM规则的四项修正案(Annexure-II),分别是2月16日,Annexure-II,分别为2022年2月16日(Annexure-III),&分别为2022年7月6日(Annexure-IV)。根据规定的第9.2号计划,通过对日期为2月16日2月16日的PWM规则通知的计划-II,“中央污染控制委员会应为生产者,进口商和品牌所有者,回收者,终止过程的终止,在这些指南中的范围内,对环境赔偿的征收和收集的指南,以外的态度,以及这些指南的范围。应根据需要更新环境补偿指南。根据规定18通过对PWM规则的修订通知,日期为2022年7月6日,“应根据中央污染控制委员会通知的不符合这些规则的规定的人的规定,根据污染者支付原则,征收环境补偿。”根据日期为2021年8月12日,2022年2月16日和2022年7月6日的修正案,框架的EC制度已对塑料废物管理规则进行了更新。该文件详细介绍了根据PWM规则的规定,将对违规者征收的EC制度。2.0塑料废物管理规则的规定环境赔偿应征收不遵守PWM规则的以下规定的规定,在表1.0
为了易于理解PWM生成和延迟生成电路,该应用程序项目涵盖了初始化过程和调整PWM输出波形中上升边缘和降落边缘的步骤,该步骤是从GPT通道0到3的输出。该项目还包括用于用户按钮中断的GPT计时器配置和触发源配置,这些中断用于用户交互。您可以使用此示例配置并根据需要更改不同的设置来触发/结束操作。
当 HV 脚施加大于 40V 的电压时,内部高压电流源 对 V CC 脚外接的电容充电。为防止 V CC 在启动过程中短 路引起的功率损耗而使 IC 过热损坏,当 V CC 电压低于 1V 时,高压电流源的充电电流被限制为 I HV1 ( 1mA )。 当 V CC 大于 1V 后,高压电流源的充电电流变为 4mA_min , V CC 电压会迅速上升。当 V CC 超过启动水平 V CC_ON 时,高压启动电流源关闭。同时, UVLO 置高有 效, IC 内部电路开始工作。
1名学生,2名学生,3名学生,4位助理教授,1,2,3,4电气工程系1,2,3,4 Gramin技术与管理校园,NANDED,印度,摘要:由于需求的增长,电动汽车(EVS)日益严重。 在EVS中,需要进行广泛的研究,以替代石油和其他燃料的替代品。 与燃烧引擎车相比,电动汽车在提供舒适性和效率方面取得了成功,但电动汽车仍然需要注意电动汽车的充电。 电动汽车的充电时间更长,每个制造公司都有不同的电池布置,因此充电器的评级不同。 我们提出了设计通用系统,用于使用脉冲宽度调制,以用于电池充电。 我们正在对“ PWM控制的通用电动汽车电池充电器”开发MATLAB模拟。 提议的系统将足够聪明,可以识别电动电动电气电池的电压额定值。 识别电池PWM受控电池充电器后,将在最短时间内为电动汽车电池充电。 该系统将在电动汽车研究领域发挥重要作用。 索引项 - MATLAB模拟。 引言电动汽车(EV)的基础设施随着电动汽车市场的增长而变得重要。 两个主流电荷连接器协议是充电DE移动(Chademo)和联合充电系统(CCS),它们具有不同的电池电压范围。 通用充电器的 DC/DC转换器需要在整个输出电压范围内实现高效率。1名学生,2名学生,3名学生,4位助理教授,1,2,3,4电气工程系1,2,3,4 Gramin技术与管理校园,NANDED,印度,摘要:由于需求的增长,电动汽车(EVS)日益严重。在EVS中,需要进行广泛的研究,以替代石油和其他燃料的替代品。电动汽车在提供舒适性和效率方面取得了成功,但电动汽车仍然需要注意电动汽车的充电。电动汽车的充电时间更长,每个制造公司都有不同的电池布置,因此充电器的评级不同。我们提出了设计通用系统,用于使用脉冲宽度调制,以用于电池充电。我们正在对“ PWM控制的通用电动汽车电池充电器”开发MATLAB模拟。提议的系统将足够聪明,可以识别电动电动电气电池的电压额定值。识别电池PWM受控电池充电器后,将在最短时间内为电动汽车电池充电。该系统将在电动汽车研究领域发挥重要作用。索引项 - MATLAB模拟。引言电动汽车(EV)的基础设施随着电动汽车市场的增长而变得重要。两个主流电荷连接器协议是充电DE移动(Chademo)和联合充电系统(CCS),它们具有不同的电池电压范围。DC/DC转换器需要在整个输出电压范围内实现高效率。通常,Chademo覆盖了最高500 V的相对低压电池,CCS覆盖了最高950 V的高压电池。要与所有EVS兼容,以适应Chademo或CCS,需要开发一个覆盖电池电压极广泛的通用EV充电器。src由于其较大的磁性电感而导致其循环损失较小,导致在谐振频率下的效率较高,但是,SRC仅提供降低电压转换率,而LLC转换器达到了启动频率的增益,而当切换频率变小时,则在较小的情况下,由于循环的循环量是在交付的方面,并且在ersonant consection中存储了这些方面,并且在这些方面取得了循环范围,而这些方面是在这些方面取得的范围,而这些方面是在这些方面取得的范围,而这些循环均可在这些方面取出,而这些均可在这些方面取得了进出,而这些转换率是在这些方面的转换,则可以在这些方面取得了进出,而这些转换率是在这些方面的转换,而这些均可依次,而循环均可置换。请注意,SRC的循环电流较小,但增益范围也有限。因此,如果在SRC中可以实现更广泛的增益,则有可能同时具有较小的循环电流和广泛的增益。由于这些原因,已经有几种方法可以为SRC提供更广泛的收益。第一种方法是脉冲宽度调制(PWM)调整的谐振转换器。在这种方法中,PWM信号引起的增强周期会增强谐振电流,从而使谐振转换器可以实现增益。这样做,可以通过较窄的开关频率范围覆盖各种电压转换比。可以通过较窄的开关频率范围降低磁性组件的尺寸。唯一的问题是当需要高增益时,共振电流的峰值很大。第二种方法是一种拓扑化技术。谐振电流的大峰会引起大的RMS电流,并导致增强开关损失。在这种方法中,控制某个开关组件以重新配置逆变器或整流器结构。例如,通过完全打开开关,全桥逆变器也可以用作半桥逆变器。
摘要。随着时代的发展,对具有高效率、高扭矩、高速度和可变速度以及低维护成本的电机的需求不断增加。这些电机之一是无刷直流电机,它使用电换向,因此具有高效率和长运行时间。因此,为了满足对高效率、高扭矩、高速度和可变速度以及低维护成本的需求,使用无刷直流电机 (BLDC) 或无刷交流电机 (BLAC)。与其他类型的电机相比,BLDC 电机在工业中得到广泛应用,因为 BLDC 电机具有许多优点。但是 BLDC 电机也有一个弱点,即难以调节速度。在这种情况下,作者有兴趣进行一项创新来克服这个问题,通过制作一个三相电机驱动器作为 BLDC 电机控制来调节 BLDC 电机的旋转,从而可以改变速度。该三相电机驱动器由 Arduino Nano 微控制器和使用 IRF3205 MOSFET 的三相逆变器电路组成。 Arduino Nano 微控制器用作三相逆变器电路中的 MOSFET 点火器,结果是本研究的成功参数是能够确定 BLDC 电机的换向,然后通过 Arduino NANO 微控制器由三相逆变器控制,以一定的频率控制 BLDC 电机的速度。
摘要 动机 在序列中寻找概率基序是注释假定转录因子结合位点 (TFBS) 的常见任务。有用的基序表示包括位置权重矩阵 (PWM)、双核苷酸 PWM (di-PWM) 和隐马尔可夫模型 (HMM)。双核苷酸 PWM 结合了 PWM 的简单性(矩阵形式和累积评分函数),但也加入了基序中相邻位置之间的依赖关系(不同于忽略任何依赖关系的 PWM)。例如,为了表示结合位点,HOCOMOCO 数据库提供了来自实验数据的 di-PWM 基序。目前,两个程序 SPRy-SARUS 和 MOODS 可以在序列中搜索 di-PWM。结果 我们提出了一个 Python 包 dipwmsearch,它为这项任务提供了一种原创且高效的算法(它首先枚举 di-PWM 的匹配词,然后立即在序列中搜索它们,即使它包含 IUPAC 代码)。用户可以通过 Pypi 或 conda 轻松安装,使用文档化的 Python 界面和可重复使用的示例脚本,从而顺利使用 di-PWM。可用性和实施:dipwmsearch 可在 https://pypi.org/project/dipwmsearch/ 和 https://gite.lirmm.fr/rivals/dipwmsearch/ 下根据 Cecill 许可获得。
ADC 以连续转换序列运行,测量每个轨道的输出电压、每个功率级的输出电流以及四个其他变量(外部温度、内部温度、输入电压和电流以及跟踪输入电压)。序列的长度由配置使用的输出轨道数量 (NumRails) 和总输出功率级 (NumPhases) 决定。完成监控采样序列的时间由以下公式给出:
2 • 完全可配置的多输出和多相位非隔离式 DC/DC PWM 控制器 • 网络设备 • 控制多达 4 个电压轨和多达 8 个相位 • 电信设备 • 服务器 • 支持高达 2MHz 的开关频率 • 具有 250 ps 占空比分辨率的存储系统 • FPGA、DSP 和内存电源 • 高达 1mV 的闭环分辨率 • 硬件加速的 3 极点/3 零点描述具有非线性增益的补偿器 UCD9248 是一款多轨、多相改进的瞬态性能同步降压数字 PWM 控制器,专为非隔离式 DC/DC 电源应用而设计。此设备 • 支持多个软启动和软停止
PWM是最早提出的控制方法,通过比较参考电压与反馈电压来调整控制信号的占空比,调节DC-DC变换器的输出,达到自动调节的效果,具有输出电压恒定、开关噪声可预测、容易滤波等优点,但由于开关管频率固定、功耗恒定,在轻载时转换效率较差。PFM的引入,利用调整控制信号解决了PWM的轻载问题。频率调制技术减少了转换过程中的开关负载,不需要复杂的变换器结构,因此不需要控制环路补偿网络,但频率变化引起的响应速度慢、输出电压纹波大,会产生难以控制的电磁干扰。两种方法都有各自的特点和问题(Yu,2003)。