DR。 Swarupanjali Padhi副教授诺伊达工程技术学院(药房研究所)大诺伊达DR。 Swarupanjali Padhi副教授诺伊达工程技术学院(药房研究所)大诺伊达
我赞扬Niti Aayog特别秘书K. Rajeswara Rao博士,以构思和推动这项倡议,并成功地完成了这项计划。我对Sh表示祝贺。kundan Kumar,Niti Aayog and Sh顾问。Niti Aayog主任Rajesh Gupta确保了研究报告的必要协调和时间结合的行动。 对由Niti Aayog S.K. Sakshi Khurana博士组成的研究团队的特别感谢。 Sasikumar,V.V。的前高级研究员 Giri国家劳工研究所,Vinoj Abraham博士,开发研究中心,Balakrushna Padhi博士,Bits-Pilani和贡献者Aishwarya Raman女士,Chhavi Banswal女士和Sreelakshmi Ramachandran女士。Niti Aayog主任Rajesh Gupta确保了研究报告的必要协调和时间结合的行动。对由Niti Aayog S.K. Sakshi Khurana博士组成的研究团队的特别感谢。Sasikumar,V.V。的前高级研究员 Giri国家劳工研究所,Vinoj Abraham博士,开发研究中心,Balakrushna Padhi博士,Bits-Pilani和贡献者Aishwarya Raman女士,Chhavi Banswal女士和Sreelakshmi Ramachandran女士。Sasikumar,V.V。的前高级研究员Giri国家劳工研究所,Vinoj Abraham博士,开发研究中心,Balakrushna Padhi博士,Bits-Pilani和贡献者Aishwarya Raman女士,Chhavi Banswal女士和Sreelakshmi Ramachandran女士。
Primary Publications • S. Raj , S. Padhi, R. Bhoot, P. Modi and Y. Simmhan, “Towards Collision Avoidance for UAVs to Guide the Visually Impaired”, IEEE/RSJ IROS Late Breaking Results, 2023 • S. Raj , H. Gupta and Y. Simmhan, “Scheduling DNN Inferencing on Edge and Cloud for Personalized UAV Fleets”, IEEE/ACM CCGRID,2023年•S。Raj,S。Padhi和Y. Simmhan,“眼镜:探索基于无人机的辅助技术,对视觉上受损”,扩展摘要,Sigchi,Sigchi,2023•S.Raj and Y. Simmhan,“朝着使用Edge and Cloud的个性化casse and Caster/Shows casse and Caste/shows的移动应用程序平台,ACM,ACM,s。 Raj,H。Gupta和Y. Simmhan,“来自无人机车队的视频供稿的实时边缘分析”,IEEE HIPC的SRS海报,2021年
satya mitra [p-1],人性化[int],[p-2]与古吉拉特邦的状态。 div>和ORS。 div>Yash Pal Dhingra [R-1],Vinay Garg [R-1],Venkateswara Rao Anumolu [R-1],Saurabh Trivedi [R-1],Rajiv Yadav [R-1],Nishant Ramakantrao Katneshwarkar [R-1] [R-41],Gopal Singh [R-1],C。K。Sasi [R-1],[R-1],Athul Babasaheb Dakh [R-1],Ashok Kumar Singh [R-1],Arputham Aruna和Co [R-1],Anil Katiyar [r-1] [R-1],[R-40],Sahil Bhalaik [R-6],Guntur Prabhakar [R-6],[R-6],[R-6],[R-6],[R-6],[R-6],Shuvodeep Roy [R-8],Aswathi M.K. div>[R-10],Jayant Mohan [R-15],Shubhranshu Padhi [R-16],Sunny Choudhary [R-18],Aaditya Aniruddha Pande [R-19],Pukhrambam Ramesh kumars kumar [R-20] [R-22],Som Raj Choudhury [R-24],Ajay Pal [R-25],Raghvendra Kumar [R-27],Purnima Krishna [R-28],Akshata [R-28] Kumar [R-30],Adarshhyay [R-30] Parijat Sinha [R-32],Shreekant Neelappa Terdal [R-37],[R-38],[R-38],[R-38],[R-38],[R-39] div>
卵子研究杂志。20,编号2,2024年3月 - 第2页。 221-232关于石墨烯氧化石墨烯的振动和结构变化的拉曼光谱研究:激光和时间的影响S. Yadav A,S。K. Padhi B,Ch。 Srinivasulu C,K。L. Naidu A,* A GSS,GSS,Gitam(被视为大学)的物理学系,Visakhapatnam,530045,印度B物理系,都灵大学,Via。 P. Giuria 1-710125都灵,意大利。 C HYDERABAD大学海得拉巴大学500046的物理学学院。 氧化石墨烯及其纳米复合材料在各种应用中起着至关重要的作用。 激光辐照是一种低成本技术,可调整石墨烯氧化物材料,并且需要对激光 - 晶烯氧化物相互作用期间对振动模式和结构变化进行详细研究。 在不同的激光功率和不同的暴露时间持续时间(通过拉曼光谱)分别在本研究中感兴趣的是在不同的激光功率和不同的暴露时间持续时间以不同的激光功率和不同的暴露时间持续时间的变化。 氧化石墨烯(GO)通过改进的悍马方法合成,并以X射线衍射(XRD),热重分析(TGA),现场发射扫描电子显微镜(FE- SEM),能量分散X射线分析(EDX),UV-VIS-NIR和RAMAN和RAMAN和RAMAN和RAMAN EXPECTRROSCOPY进行合成。 GO的一阶拉曼频谱分别由1350和1584 cm -1的宽D和G峰组成,大约在2700 cm -1左右。 使用Lorentzian函数,将一阶频带变形为五个模式,将第二阶带分为四个模式。 这些模式的峰位置和FWHM经历了指示性变化。2,2024年3月 - 第2页。 221-232关于石墨烯氧化石墨烯的振动和结构变化的拉曼光谱研究:激光和时间的影响S. Yadav A,S。K. Padhi B,Ch。Srinivasulu C,K。L. Naidu A,* A GSS,GSS,Gitam(被视为大学)的物理学系,Visakhapatnam,530045,印度B物理系,都灵大学,Via。P. Giuria 1-710125都灵,意大利。C HYDERABAD大学海得拉巴大学500046的物理学学院。 氧化石墨烯及其纳米复合材料在各种应用中起着至关重要的作用。 激光辐照是一种低成本技术,可调整石墨烯氧化物材料,并且需要对激光 - 晶烯氧化物相互作用期间对振动模式和结构变化进行详细研究。 在不同的激光功率和不同的暴露时间持续时间(通过拉曼光谱)分别在本研究中感兴趣的是在不同的激光功率和不同的暴露时间持续时间以不同的激光功率和不同的暴露时间持续时间的变化。 氧化石墨烯(GO)通过改进的悍马方法合成,并以X射线衍射(XRD),热重分析(TGA),现场发射扫描电子显微镜(FE- SEM),能量分散X射线分析(EDX),UV-VIS-NIR和RAMAN和RAMAN和RAMAN和RAMAN EXPECTRROSCOPY进行合成。 GO的一阶拉曼频谱分别由1350和1584 cm -1的宽D和G峰组成,大约在2700 cm -1左右。 使用Lorentzian函数,将一阶频带变形为五个模式,将第二阶带分为四个模式。 这些模式的峰位置和FWHM经历了指示性变化。C HYDERABAD大学海得拉巴大学500046的物理学学院。氧化石墨烯及其纳米复合材料在各种应用中起着至关重要的作用。激光辐照是一种低成本技术,可调整石墨烯氧化物材料,并且需要对激光 - 晶烯氧化物相互作用期间对振动模式和结构变化进行详细研究。在不同的激光功率和不同的暴露时间持续时间(通过拉曼光谱)分别在本研究中感兴趣的是在不同的激光功率和不同的暴露时间持续时间以不同的激光功率和不同的暴露时间持续时间的变化。氧化石墨烯(GO)通过改进的悍马方法合成,并以X射线衍射(XRD),热重分析(TGA),现场发射扫描电子显微镜(FE- SEM),能量分散X射线分析(EDX),UV-VIS-NIR和RAMAN和RAMAN和RAMAN和RAMAN EXPECTRROSCOPY进行合成。GO的一阶拉曼频谱分别由1350和1584 cm -1的宽D和G峰组成,大约在2700 cm -1左右。使用Lorentzian函数,将一阶频带变形为五个模式,将第二阶带分为四个模式。这些模式的峰位置和FWHM经历了指示性变化。在不同暴露时间持续时间内具有激光功率的缺陷模式的强度比和(𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖' - 𝐺𝐺𝐺𝐺)的变化分别表明边缘缺陷和氧化石墨烯的降低。这些结果扩大了对不同时间持续时间激光功率对氧化石墨烯特征的影响的理解。我们的研究提供了有关激光互动的定量信息。(2024年1月21日收到; 2024年4月8日接受)关键词:氧化石墨烯,缺陷,激光功率,拉曼光谱,平面内晶体大小(L a)1。简介氧化石墨烯是一种二维官能化透明岩片,含有连接在边缘和基础平面的功能分子的氧。氧化石墨烯已被广泛用于电化学超级电容器[1],生物医学[2],传感器[3],现场效应晶体管(FET)[4],燃料电池[5],锂电池[6],Polymer nanocomososes [7]。不同的方法,包括化学,热,水热,电化学和光化学还原,以减少官能团以实现石墨烯样结构,众所周知的石墨烯氧化石墨烯。通过去除不稳定的C = O键[8] Raman Spectroscoppy Analysis是一种非损害工具,可以从频谱参数中获得有关缺陷和疾病的知识,从而通过去除不稳定的C = O键来精确调整和量身定制缺陷[8],对缺陷进行了精确调整和剪裁,从而,对缺陷进行了精确调整和剪裁。通常,G波段是石墨烯片的特征,而D波段随着石墨烯片中的缺陷和疾病的增加而演变。通过对X射线衍射模式或样品的X射线光电光谱进行相应分析来量化拉曼光谱的变化来开发结构光谱相关性[9-11]。氧化石墨烯的拉曼光谱包含一阶带,其特征峰约为1350(D波段)和1580 cm -1(g波段),而在2700 cm -1左右的宽二阶频带。