成功的候选人将成为供应链团队的一部分,并协助团队进行日常活动,以购买原材料和供应成品以出口客户。角色包括采购,管理和维持足够的原材料供应,与供应商和客户联系,提供文档,以向内和外向运输原材料和成品。职责包括:
此预印本版的版权持有人于2025年2月12日发布。 https://doi.org/10.1101/2025.02.09.25321969 doi:medrxiv preprint
1 克劳德·伯纳德里昂第一大学制药与生物科学研究所 (ISPB),69373 里昂,法国 2 里昂南医院生物化学与分子生物学系,里昂民间临终关怀院,69495 Pierre-Bénite,法国 3 里昂癌症学创新中心 (CICLY) EA 3738,里昂南医学与助产学院,克劳德·伯纳德里昂第一大学,69921 Oullins,法国 4 里昂民间临终关怀院癌症研究所循环癌症 (CIRCAN) 计划,69495 Pierre-Bénite,法国 5 里昂南医学与助产学院,克劳德·伯纳德里昂第一大学,69921 Oullins,法国 6 里昂南肺病学系急性呼吸道疾病与胸部肿瘤学Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France 7 细胞和分子放射生物学实验室 UMR CNRS5822/IP2I,南里昂医学与医学学院,Claude Bernard University Lyon I, 69921 Oullins, France 8 生物信息学系,Hospices Civils de Lyon, 69008 Lyon, France 9 INOVOTION, 38700 拉特龙什, 法国 * 通讯地址: lea.payen-gay@chu-lyon.fr
摘要:在过去的几十年中,积累的证据表明cholecys- Tokinin 2型受体(CCK2R)在疼痛调节中的关键作用。CCK2R激活在直接促进伤害感受中的确定作用导致了几种CCK2R拮抗剂的发展,这些拮抗剂已被证明可以成功缓解几种啮齿动物的疼痛模型中的疼痛。但是,临床试验的结果更为适中,因为它们尚未证明动物获得的预期生物学作用。临床前研究和临床研究之间的结果不一致表明,重新考虑了我们对CCK2R药理学和功能的分子基础的了解。本综述的重点是在感觉神经系统中特定的CCK2R的细胞定位,并进一步详细讨论了控制疼痛感知所涉及的分子机制和信号转导途径。然后,我们全面概述了针对CCK2R的最成功化合物,并报告了用于实现CCK2R调制的药理策略的最新进展。我们故意区分临床前模型中获得的CCK2R益处和具有不同疼痛病因的临床试验的结果。最后,我们强调了CCK2R的生物学和临床相关性是开发新的疼痛治疗方法的有希望的目标。
本报告的资金来自非营利基金会,最大的单一资助者是 Arnold Ventures。这项工作没有来自健康保险公司、药品福利管理者 (PBM) 或生命科学公司的资金。ICER 从这些健康行业组织获得其总收入的约 23%,用于运行单独的政策峰会计划,资金大致平均分配给保险公司/PBM 和生命科学公司。有关资助者的完整列表以及有关 ICER 支持的更多信息,请访问 https://icer.org/who-we-are/independent-funding/ 。对于药物主题,除了接受公众的建议外,ICER 还会扫描公开信息,并受益于与 IPD Analytics 的合作,IPD Analytics 是一个独立组织,为包括付款人、制药商、供应商和批发商在内的各种行业利益相关者对新兴药物管道进行分析。IPD 向 ICER 提供了一份关于药物管道的定制报告,但不会优先考虑特定 ICER 评估的主题。关于中西部 CEPAC
目的:这项研究的目的是深入研究从急性转变为慢性疼痛的转化涉及的中心病理机制。患者和方法:这项研究招募了86名急性颈部疼痛的人,89例患有慢性颈部疼痛。利用3.0T MR Scanner,我们获得了三维T1加权成像(3D-T1WI)图像,并分析了具有自由曲弗软件的两组之间的结构差异,以评估皮质厚度的改变。此外,采集了血氧水平依赖性功能磁共振成像(BOLD-FMRI)图像,以评估使用DPARSF软件的低频幅度差异差异。结果:与患有急性颈部疼痛的慢性颈部疼痛患者的皮质厚度增加,左侧额叶额叶,左侧地峡扣带,左侧额叶和右前神经区域。低频振幅测量表明,左侧外侧上额回和左侧后回的活性下降,以及其他区域,右侧额叶和右下额额回的活性增加。结论:我们的发现表明,边缘系统和前额叶皮层的功能障碍和结构变化可能在从急性到慢性颈部疼痛的发展中起关键作用。这些见解为理解疼痛慢性的主要机制提供了一个重要的新方向。关键字:功能性磁共振成像,低频波动的幅度,皮质厚度,颈部疼痛,急性疼痛,慢性疼痛
在药物发现中,药物-靶标亲和力 (DTA) 被视为至关重要的一步,因为它有助于在开发过程中识别最有前途的候选药物。由于必须考虑药物和靶分子的结构和功能,以及它们复杂而非线性的相互作用,DTA 预测是一项具有挑战性的任务。本研究的目的是提出一种新颖的 DTA 预测框架,该框架利用图神经网络 (GNN) 的交叉注意网络 (CAN) 的优势。然而,使用 GNN 表示图会保留其 3D 结构信息。现有的基于注意力的方法并未充分利用它们。我们的框架使用 CAN 通过分析药物分子的不同部分如何与蛋白质的特定区域相互作用来捕获药物-靶标对的更准确表示。我们在顺序架构中使用 GIN 和 GAT 来捕获药物图分子的局部和全局结构信息。我们在两个基准数据集 Davis 和 KIBA 上评估了所提出方法的性能。其性能令人鼓舞,在均方误差 (MSE) 和一致性指数 (CI) 方面优于许多最先进的方法。具体来说,对于 Davis 数据集,我们实现了 0.222 的 MSE 和 0.901 的 CI,而对于 KIBA,我们获得了 0.144 的 MSE 和 0.883 的 CI。我们的方法提高了相互作用分析的可解释性和特异性,为药物发现过程提供了更深入的见解,并为预测的 DTA 提供了有价值的解释。我们的研究代码可在以下网址获取:https://github.com/fsonya88/CAN-DTA。
我们检查了Bogoliubov-de Gennes Hamiltonian及其对称性对称性,用于分时交换对称性破碎的三维Weyl超导体。在消失的配对电位的极限中,我们指定该哈密顿量在两组持续对称性下是不变的,即u(1)量规对称性和u(1)轴向对称性。尽管Bardeen-Cooper-Schrie Q er类型的配对会自发打破这两个对称性,但我们表明,Fulde-Ferrell-Larkin-ovchinnikov型配对的fulde-ferrell-ferrell-ferrell-larkin-ovchinnikov型配对会自发地破坏u(1)的对称性(然后通过众所周知的超级量表模式恢复了超级质量验证模式)。因此,在前一种情况下,系统中需要两种NAMBU-GOLDSTONE模式来恢复损坏的对称性。我们表明这两种模式之一是出现的伪标量相模式。我们还证明了这种相位模式会导致伪 - 甲壳虫效应。
跨语言刺激(TS) *有关枕神经痛和头痛的经皮外周神经刺激的信息,请参阅临床政策,标题为枕神经注射和消融(包括枕骨神经痛和头痛)。注意:有关背根神经节(DRG)刺激的信息,请参阅脊髓的临床政策,标题为植入的电刺激器。医疗记录文件用于审查卫生服务的福利覆盖范围由成员特定的福利计划文件和可能需要特定服务覆盖的适用法律确定。可能需要医疗记录文件来评估成员是否符合承保范围的临床标准,但不能保证对所请求的服务的承保范围;请参阅标题为“医疗记录”文档的协议。适用的代码仅供参考,以下程序和/或诊断代码提供了以下列表,并且可能不包含在内。在本策略中列出代码并不意味着代码所描述的服务是涵盖或未覆盖的健康服务。卫生服务的福利覆盖范围由成员特定的福利计划文件和可能需要特定服务覆盖的适用法律确定。纳入代码并不意味着要偿还或保证索赔付款的任何权利。其他政策和准则可能适用。
1 荷兰鹿特丹伊拉斯姆斯大学医学中心发育生物学系,邮编 3000 CA • 2 荷兰鹿特丹伊拉斯姆斯大学医学中心 Oncode 研究所,邮编 3000 CA • 3 荷兰鹿特丹伊拉斯姆斯大学医学中心伊拉斯姆斯 MC 癌症研究所分子遗传学系,邮编 3000 CA • 4 细胞整合生物学研究所 (I2BC)、CEA、CNRS、Uni Paris-Sud、Uni Paris-Saclay、法国吉夫河畔伊维特 • 5 荷兰鹿特丹伊拉斯姆斯大学医学中心细胞生物学系,邮编 3000 CA • 6 意大利罗马第二大学医学院生物医学与预防系 • 7 荷兰鹿特丹伊拉斯姆斯大学医学中心放射治疗系,邮编 3000 CA • 8 荷兰鹿特丹伊拉斯姆斯大学医学中心血管外科系, 3000 CA,鹿特丹,荷兰