纠缠 - 根据任何当地现实的模型,即局部隐藏变量,都超过了可能的非局部相关性,这是量子力学的非常强调,并且是许多新的量子信息革命的基础。在1960年代,约翰·贝尔(John Bell)开发了一项测试,通过指定两个模型中具有不同最大界限的数量,将这种隐藏可变性理论与量子机械理论区分开。自从他们出现以来,贝尔测试一直是物理学基础研究的重点,提供了一种方法来证明量子力学中存在的非局部效应[2],验证纠缠[3]的存在,甚至探索了超固量理论的限制,从而可以预测与标准量子机械的允许的强度相关的强度相关性[4]。其他技术,例如量子转向[5-8],将纠缠验证的适用性扩展到具有不同假设的更广泛的方案。最初,这些非局部性测试被认为是“思想实验”,揭示了量子力学的意外(或某些不合逻辑)特征。但是,重复的实验性验证是纠缠状态的标志的相关性,毫无疑问,“远距离的怪异动作”是现实的一部分。这些测量技术的重新确定已经达到了使用铃铛不平等的非局部性“无漏洞”测试的三个测试,从而提供了令人信服的证据,表明自然是真正的非本地遗体[9-11]。同时,
在许多电磁兼容性(EMC)标准中描述了各种干扰环境,并且可能是在给定情况下可能会遇到的危害的有用资源。在产生,运输,消耗或(尤其是)切换的大量电力的环境中,可以在10 MHz以下产生大量噪声。可能发生这种情况的设置示例包括制造线,机械车间,空中,海上,道路和铁路车辆,发电,变电站和开关房间,仅举几例。用于自动化控制的SPE可能会在10 MHz以下遇到大量噪声。预期会遇到的干扰水平和频谱的细节自然取决于要部署系统的环境细节。但是,在EMC测试标准和建议中,耦合干扰与信号线的来源和机制的性质一次又一次地显示为常见主题。这些包括:
我们考虑将单个对象分配给有偿代理的问题。代理的偏好不一定是拟线性的。我们用优先规则来描述满足成对策略防护性和非强加性的规则类。即使我们将成对策略防护性替换为较弱的有效成对策略防护性或较强的群体策略防护性,我们的描述结果仍然有效。通过利用我们的描述,我们可以确定同时满足以下属性的规则类:(i) 附加于 ,(ii) 福利连续 ,(iii) 最低限度公平 ,(iv) 在满足两个属性的规则类中受限于效率 ,或 (v) 在满足属性的规则类中收入不受支配,并发现在成对策略防护性下效率、公平和收入最大化的最低属性之间的张力。
摘要:目前的成核模型为晶体材料的形成提出了多种选择。然而,在分子水平上探索和区分不同的结晶途径仍然是一个挑战,特别是对于复杂的多孔材料。这些通常由具有有序框架和孔隙成分的大晶胞组成,并且经常在复杂的多相合成介质中成核,从而限制了深入表征。这项工作展示了如何在单相水合硅酸盐离子液体 (HSIL) 中详细记录结晶过程中的铝硅酸盐形态。观察结果表明,沸石可以通过由铝硅酸盐阴离子与碱金属阳离子成离子配对组成的离子配对预成核簇的超分子组织形成,并暗示 HSIL 中的沸石结晶可以在现代成核理论的范围内描述。
连接表皮溶解Bullosa(JEB)是一种令人衰弱的遗传性皮肤疾病,由编码Lam-Inin-332,XVII型胶原蛋白(C17)的基因突变引起,并综合素6 B 4,维持模糊和表皮之间的稳定性。我们签署了患者特异性的cas9-核酸酶和基于 - 基因酶的靶向策略,用于在Col17a1的外显子52中重新构建与缺乏全长C17表达相关的共同纯合子deportion。随后对蛋白质的重新修复,糖节组成以及治疗后的DNA和mRNA结局的发散表明,基于成对的基于成对的COL17A1编辑的吉利效率,安全性,安全性和精度。几乎46%的原发性jeb角细胞表达了C17。重新构架Col17a1 tran-文字主要具有25和37-nt的缺失,占所有编辑的> 42%,编码C17蛋白质变体,可准确地定位于细胞膜。此外,与未处理的JEB细胞相比,经过校正的细胞显示出精确的细胞外120 kDa C17结构域的精确脱落,并提高了对层粘连蛋白332的粘附能力。三维(3D)皮肤等效物在表皮和真皮之间的基底膜区域内表现出C17的认可和连续沉积。我们的发现构成了第一次基于基因编辑的Col17a1突变的校正,并证明了基于Cas9 D10A Nickase比野生型CAS9 Cas9基于野生型Cas9策略在临床环境中基于基因重塑的Prox-Imal配对迹象策略的优越性。
免责声明:本社论反映作者的观点,不应被视为代表 FDA 的观点或政策。
脑电信号具有不易伪装、可携带、无侵入等特点,在情绪识别中被广泛应用。然而由于个体差异的存在,不同受试者的同一种情绪状态下的脑电信号数据分布会存在一定的差异。传统的情绪识别方法为了得到对新受试者分类效果良好的模型,需要收集大量新受试者的标记数据,但这往往不现实。本研究针对跨受试者脑电情绪分类提出了一种迁移判别字典对学习(TDDPL)方法。TDDPL方法将不同受试者的数据投影到领域不变子空间中,基于最大均值差异(MMD)策略构建迁移字典对学习。在子空间中,TDDPL学习共享的综合字典和分析字典,搭建从源域(SD)到目标域(TD)的判别知识桥梁。通过最小化每个子字典的重构误差和类间分离项,学习到的合成字典具有判别性,而学习到的低秩编码具有稀疏性。最后,在 TD 中,基于分类器参数、分析字典和投影矩阵构建判别分类器,而无需计算编码系数。在 SEED 和 SEED IV 数据集上验证了 TDDPL 方法的有效性。
值得注意的是,超导导线、电极和约瑟夫森结的复杂组件可以通过少量集体相位自由度简洁地描述,这些自由度的行为类似于势能中的量子粒子。几乎所有这些电路都在量子相位波动较小的区域运行——相关通量小于超导通量量子——尽管进入大波动区域将对计量和量子比特保护产生深远影响。困难来自于电路阻抗明显需要远远超过电阻量子。独立地,需要库珀对形成对才能隧穿的奇异电路元件已被开发出来以编码和拓扑保护量子信息。在这项工作中,我们证明配对库珀对会放大电路基态的相位波动。我们测量了仅对第一个跃迁能量的通量灵敏度的十倍抑制,这意味着真空相位波动增加了两倍,并表明基态在几个约瑟夫森阱上是非局域的。
摘要:从量子传感到量子计算,量子发射器在众多应用中必不可少。六方氮化硼 (hBN) 量子发射器是迄今为止最有前途的固态平台之一,因为它们具有高亮度和稳定性以及自旋-光子界面的可能性。然而,对单光子发射器 (SPE) 的物理起源的理解仍然有限。在这里,我们报告了整个可见光谱中 hBN 中的密集 SPE,并提出证据表明大多数这些 SPE 可以通过供体-受体对 (DAP) 很好地解释。基于 DAP 跃迁生成机制,我们计算了它们的波长指纹,与实验观察到的光致发光光谱非常匹配。我们的工作为物理理解 hBN 中的 SPE 及其在量子技术中的应用迈出了一步。关键词:六方氮化硼、单光子发射器、供体-受体对、量子光学■简介
抽象的讲座是大学生学习经验的主要部分,并且是将知识和概念转移到更少的时间和最少的资源的有效手段。目标:在1季和2岁的医学生的参与,信心,批判性思维和参与解剖学课程中的教育策略与思维对份额的策略相结合时,就找到了讲座的影响。研究设计:描述性横截面研究。方法论:目前的研究招募了200名涉及性别的参与者。基于5个问题的在线反馈表演是开发的,并在10周治疗计划之前和之后从学生那里收集了数据。统计分析:通过SPSS软件分析数据,版本19作为定性变量表示为百分比。结果:大多数学生在解剖学讲座期间应用思想伴侣技术带来了重大好处。结论:我们得出的结论是,Think Pair在讲座上共享策略使学生更加积极参与课堂讨论,他们对与同龄人分享自己的想法更有信心。它还促进了学生的批判性思维,他们从老师那里得到了更频繁的反馈。关键词:讲座,思考对共享策略,批判性思维和解剖课。简介讲课是最古老的教学方法之一。参加了我的医学教学课程后,我意识到计划教学课程的重要性,因此我可以帮助学生在演讲中学习。讲座是大学学生学习经验的主要部分,是在更少的时间和最少的资源中将知识和概念转移到大型群体的有效手段1。但是,大型教学提出了几个挑战,例如:保持学生的专注,感兴趣和参与,确保所有学生都有平等的学习机会,更少的时间来解决问题,几乎没有向学生提供反馈2。我决定从一种小的创新性但一种思维对 - 共享(TPS)的互动技术开始。这种策略的实践将学习的认知和共同方面联系在一起,鼓励思维的发展和知识的构建3。思维对分享策略比传统的质疑结构具有许多优势。“思考时间”结合了“等待时间”的重要概念。它允许所有学生开发出精心设计的答案,这些答案将有理由和解释,因为他们已经考虑并讨论了。医学生必须具有推理,创建,分析,评估和应用其知识在临床实践中的能力。批判性思维是通过使用Think Pair共享4之类的策略来实现的能力之一。因此,这项研究的目的是解决学生对应用TPS策略的意见及其对解剖学学生的学习,参与和信心的影响,以参与解剖课程讨论。