lspm,CNRS,巴黎大学13 Sorbonne ParisCité,99 AV。J.B.Clément,93430 Villetaneuse,法国。B LPICM,CNRS,Ecole Polytechnique,Palytechnique de Paris,Palaiseau,法国91128,法国。*通讯作者:karim.ouaras@polytechnique.edu摘要抽象的低压等离子体过程通常用于生长,功能化或蚀刻材料,并且由于其某些独特的属性,等离子体已成为某些应用(例如微电源)的主要参与者。但是,在纳米颗粒的合成和功能化方面,等离子体过程仍处于研究级别。Yet plasma processes can offer a particularly suitable solution to produce nanoparticles having very peculiar features since they enable to: (i) reach particle with a variety of chemical compositions, (ii) tune the size and density of the particle cloud by acting on the transport dynamics of neutral or charged particles through a convenient setting of the thermal gradients or the electric field topology in the reactor chamber and (iii) manipulate nanoparticles and deposit them directly在底物上,或与连续膜一起编码,以生产纳米复合材料,或(iv)将它们用作模板生产一维材料。在本文中,我们通过结合时间分辨和原位激光灭绝和散射诊断,QCL吸收光谱,质谱,质谱,光学发射光谱和SEM以及颗粒粒子转运模型,对低压微波等离子体中的纳米颗粒合成和动力学进行实验研究。我们首次展示了无电微波等离子体中粒子云的嗜热动力学。我们表明,这种作用与血浆组成中的特殊波动有关,并导致大部分血浆中的空隙区域形成,这些等离子体被颗粒云包围,并在周围性后造成的颗粒云中围绕。我们还揭示并分析了前体的分离和分子生长的动力学,从而在观察的nanoparticle nanapictical nanapticle中产生了分子生长。引言尘土或复杂的等离子体研究在诸如能源和环境等钥匙技术领域的背景下至关重要
1 波尔多大学-CNRS-CEA,激光强度与应用中心 (CELIA),UMR 5107,F-33405 Talence,法国 2 等离子体物理与激光研究所,大学研究与创新中心,希腊地中海大学,74100 Rethymno,克里特岛,希腊 3 希腊地中海大学工程学院电子工程系,73133 Chania,克里特岛,希腊 4 CEA、DAM、DIF,F-91297 Arpajon,法国 5 萨拉曼卡大学基础物理系,37008 Salamanca,西班牙 6 巴黎萨克雷大学,CEA、LMCE,91690 Bruyères-le-Châtel,法国 7 约克大学物理、工程与技术学院约克等离子体研究所,YO10 5DD,英国 8 巴利亚多利德大学理论、原子和光学物理系,47011 巴利亚多利德,西班牙 9 脉冲激光中心,M5 号楼,科学园,37185 Villamayor,萨拉曼卡,西班牙 10 LULI - CNRS、CEA、索邦大学、巴黎综合理工学院、巴黎综合理工学院,F-91120 Palaiseau Cedex,法国 11 普林斯顿等离子体物理实验室,普林斯顿,新泽西州 08543,美国 12 阿尔伯塔大学电气与计算机工程系,埃德蒙顿,T6G1R1 阿尔伯塔,加拿大 13 加州大学圣地亚哥分校能源研究中心,拉霍亚,CA 92093,美国 14 劳伦斯利弗莫尔国家实验室,利弗莫尔,加利福尼亚州94550,美国 15 iUNAT–拉斯帕尔马斯大学物理系,35017 拉斯帕尔马斯,西班牙 16 伦敦帝国理工学院布莱克特实验室等离子体物理组,伦敦,SW7 2AZ,英国 17 通用原子公司,加利福尼亚州圣地亚哥 92121,美国。 18 等离子体物理与激光微聚变研究所,01-497,华沙,波兰 19 等离子体物理研究所,捷克科学院,182 00,布拉格,捷克共和国 20 艾克斯马赛大学,CNRS,PIIM,F-13013 马赛,法国 21 极端光基础设施 ERIC,ELI-Beamlines 设施,25241 Dolní Brezany,捷克共和国(日期:2024 年 2 月 6 日)
1实验室Kastler Brossel,Sorbonne University,ENS-PSL大学,CollègeDeFrance,CNRS,F-75005法国,法国2 Physikalisch-Technische Bundesanstalt(PTB),Abbestraße2-12,10587 Berlin,Dermany; stephan.krenek@ptb.de(S.K.); rene.eisermann@ptb.de(R.E。); daniel.schmid@ptb.de(d.s.)3荷兰CD DELFT,代尔夫特技术大学精密和微系统工程系; a.cupertino@udelft.nl(A.C。); r.a.norte@udelft.nl(R.A.N.)4公共计量实验室(LCM LNE-CNAM),61 Rue du Landy,F-93210 La Plaine Saint-Denis,法国; ferhat.loubar@lecnam.net(F.L.); olga.kozlova@lne.fr(O.K.); stephan.briaudeau@lecnam.net(s.b。)5法国帕里斯 - 萨克莱大学CNRS的纳米科学和纳米技术中心,法国帕利斯帕利大学; remy.braive@c2n.upsaclay.fr(R.B.); theo.martel@c2n.upsaclay.fr(T.M.)6巴黎大学,F-75006法国巴黎7法国大学,F-75231,法国,法国8. Micro yNanotecnología,IMN-CNM,CSIC,CSIC(CEI UAM+CSIC UAM+CSIC)ISAAC NEWTON,8,TRES CANTOS CANTOS,2876660 MANDID,MADID; lukas.weituschat@csic.es(l.w.); daniel.ramos@csic.es(D.R.); pabloaitor.postigo@immm.cnm.csic.es(P.A.P。)9 CentroEspañolDeMetrologia(CEM),Calle del Alfar,2,Tres Cantos,28760,西班牙马德里; mjmartinh@cem.es(M.J.M.H.); acasasc@cem.es(A.C。)10国家计量学院VTT Mikes,FI-02044 VTT,FI-02150 ESPOO,芬兰; shahin.tabandeh@vtt); ossi.hahtela@vtt); sara.pourjamal@vtt); w.dickmann@tu-bs.de(W.D.)); p.g.steeneken@udelft.nl(P.G.S.)11 Vaisala Oyj,VanhaNurmijärvent21,FI-01670 Vantaa,芬兰12 Lena征收实验室,Braunschweig技术大学,Langer Kamp 6 A/B,38106 Braunschweig,Braunschweig,德国; s.kroker@tu-bs.de(S.K.13柏林技术大学高频和半义系统技术研究所,德国柏林Einsteinufer 25,10587; lzimmermann@ihp-Microelectronics.com 14 IHP-Leibniz创新微电子学研究所,技术园区25,15236 Frankfurt(Oder),德国; winzer@ihp-microelectronics.com 15纳米科学大学卡夫利研究所,洛伦兹维格大学,洛伦兹维格大学1,2628 CJ DELFT,荷兰 *相关性:tristan@sorbonne@sorbonne-unversite.fr(T.B.
B.Dieny 1 , ILPrejbeanu 1 , K.Garello 2 , P.Gambardella 3 , P.Freitas 4,5 , R.Lehndorff 6 , W.Raberg 7 , U.Ebels 1 , SODemokritov 8 , J.Akerman 9 , 10 , APir 11 , P.Ac . delmann 2 , A.Anane 13 , AVChumak 12, 14 , A.Hiroata 15 , S.Mangin 16 , M.Cengiz Onbaşlı 17 , Md'Aquino 18 , G.Prenat 1 , G.Finocchio 19 , L.Lopez Diaz , R.C. esenko 22 , P.Bortolotti 13 1. Univ. 1. 格勒诺布尔阿尔卑斯大学、CEA、CNRS、格勒诺布尔 INP、IRIG、SPINTEC,法国格勒诺布尔 2. 比利时鲁汶 Imec 3. 苏黎世联邦理工学院材料系磁学与界面物理实验室,瑞士苏黎世。 4. 国际伊比利亚纳米技术实验室(INL),葡萄牙布拉加 5. 系统与计算机微系统与纳米技术工程研究所(INESC MN),葡萄牙里斯本 6. Sensitec GmbH,德国美因茨 7. 德国英飞凌科技股份公司,德国应用科学研究所,德国明斯特 9. 瑞典哥德堡大学物理系 10. 瑞典皇家理工学院工程科学学院应用物理系 11. 德累斯顿—罗森多夫亥姆霍兹中心,离子束物理和物理研究所,德国迈兴 12. 凯泽斯劳滕工业大学和州立研究中心 OPTIMAS,德国凯泽斯劳滕 13. 法国国家科学研究中心泰雷兹公司巴黎南大学巴黎-萨克雷,帕莱索,法国 14. 维也纳大学物理学院,维也纳,奥地利 15. 约克大学电子工程系,赫斯灵顿,英国 16. 洛林大学让·拉穆尔研究所,南锡,法国 17. 科克大学,伊斯坦布尔,18. 佩科维奇,那不勒斯,意大利 19. 墨西拿大学数学与计算机科学系、物理科学与地球科学系,墨西拿,意大利 20. 萨拉曼卡大学应用物理系,萨拉曼卡,西班牙 21. 约克大学物理系,马德里材料研究所,英国 22 CSIC,西班牙
1年生命周期分析中心,工程与应用科学学院,哥伦比亚大学,纽约,纽约,纽约,10027,美国; marco.raugei@brookes.ac.uk(M.R.); mg3217@columbia.edu(M.G.); el2828@columbia.edu(E.L。)2布鲁克黑文国家实验室,跨学科科学系,纽约州奥普顿市815号建筑物,美国11973,美国3号工程,计算机和数学学院,技术,设计和环境学院,设计与环境学院W2 6LA,英国5卢特大学能源系统学院,芬兰53850 Lappeenranta; Christian.breyer@lut。Fif6民用与环境工程系,萨里大学,吉尔福德GU2 GU2 7XH,英国; s.bhattacharya@surrey.ac.uk 7环境工程与地球科学,克莱姆森大学,克莱姆森,SC 29634,美国; Madale@clemson.edu 8欧洲委员会,意大利ISPRA联合研究中心欧洲委员会; arnulf.jaeger-waldau@ec.europa.eu 9 Institutphotovoltaïqueld'elede france(ipvf),CNRS UMR 9006,18 Boulevard Thomas Gobert,91120 palaiseau,法国帕莱索; daniel.lincot@cnrs.fr 10环境研究系,圣劳伦斯大学,美国纽约州13617,美国; dmurphy@stlawu.edu 11清洁电源研究,美国加利福尼亚州纳帕第三街1541号,美国加利福尼亚州94559; marcp@cleanpower.com 12 First Solar,美国坦佩,AZ 85281,华盛顿街350号; parikhit.sinha@finferstsolar.com 13 Angus Rockett,冶金与材料工程系,科罗拉多州矿业学校305B山丘,美国伊利诺伊州街1500号,美国伊利诺伊州街1500号,美国公司80401; arockett@mines.edu 14 Inl-International Iberian纳米技术实验室,AV。MestreJoséveigas/n,4715-330 Braga,葡萄牙; sascha.sadewasser@inl.int 15 HelioSourcetech,8987 E. Tanque Verde,Suite 309,PMB216,Tucson,Tucson,AZ 85749,美国; bjs@heliosourcetech.com 16 Sunpower创始人,退休,24700 Voorhees Drive,Los Altos Hills,CA 94022,美国; dickswanson15@gmail.com 17 Amrock Group,悉尼,新南威尔士州2052,澳大利亚; pjverlinden@icloud.com 18新南威尔士大学光伏和可再生能源工程学院,新南威尔士大学,新南威尔士州2052年,澳大利亚1952年,澳大利亚19号国家主要实验室,Trina Solar,Xinbei District,changzhou 213031,中国
用于压缩空气储能的多级径向流泵涡轮机:实验分析和建模 Egoï Ortego 1,2 , Antoine Dazin 1 , Frédéric Colas 3 , Olivier Roussette 1 , Olivier Coutier Delgosha 1,4 , Guy Caignaert 1 1 Univ.里尔、法国国家科学研究院、ONERA、巴黎高科艺术与工学院、里尔中央理工学院、UMR 9014-LMFL - 里尔流体力学实验室 - Kampé de Fériet,F-59000,里尔,法国。 2 MINES ParisTech-PSL 研究型大学-CES,法国帕莱索 3 Univ.里尔,巴黎高工学院,里尔中央理工学院,HEI,EA 2697 - L2EP - 电工技术与电力电子实验室,F-59000 里尔,法国 4 Kevin T. Crofton 弗吉尼亚理工大学航空航天与海洋工程系,弗吉尼亚州布莱克斯堡 24060,美国 摘要 近年来,能源格局演变引发了网络管理问题,例如可再生生产来源的日益整合,这些变化刺激了与电网相连的存储系统的不断发展。在现有的存储技术中,水气系统似乎提供了一种清洁、廉价的能源存储解决方案。本研究分析了使用旋转动力可逆泵/涡轮的闭式循环空气-水直接接触积累系统。使用独特的能量转换机器和易于回收的材料可以实现经济高效、环保且使用寿命长的存储技术。本文重点介绍该系统在实验室环境中的实验实现与分析,以及其多物理动态行为的建模。为了应对系统多变的运行条件,成功测试了两种不同的液压机实时控制策略。最后讨论了整体系统效率。效率控制策略实现了31%的往返效率,功率控制策略分别使充电和放电模式下的交换功率精度达到5%和23%。多物理动态模型导致涡轮机模式加速度预测的误差为 4%,这表明这种建模方法对于此类瞬态系统具有重要意义。术语符号希腊符号和运算符定容比热容 (J/(kg.K))Δ差
1 Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany 2 Institute of Solid State and Materials Physics, TU Dresden, Haeckelstraße 3, 01069 Dresden, Germany 3 Institute of Physical Chemistry, TU Dresden, Haeckelstraße 3, 01069 Dresden, Germany 4 SLAC National Accelerator美国孟洛克公园,美国孟洛公园,美国美国5物理研究所,阿尔伯特·恩斯坦 - 斯特林大学。
重新利用全身麻醉的脑电图监测来建立大脑老化的生物标志物:一项探索性研究 David Sabbagh* a,b 、Jérôme Cartailler a,c 、Cyril Touchard c 、Jona Joachim c 、Alexandre Mebazaa a,c 、Fabrice Vallée a,b,c 、Étienne Gayat a,c 、Alexandre Gramfort b 、Denis A. Engemann* b,d,ea 巴黎大学,INSERM,U942 MASCOT,F-75006,法国巴黎 b 巴黎萨克雷大学,因里亚,CEA,帕莱索,法国 c 麻醉和重症监护医学系,AP-HP,Hôpital Lariboisière,F-75010,法国巴黎 d 马克斯·普朗克人类认知和脑科学研究所,系神经病学, D-04103,德国莱比锡和罗氏制药研究与早期开发、神经科学和罕见疾病、罗氏巴塞尔创新中心、F.霍夫曼 - 罗氏有限公司,瑞士巴塞尔 通讯:* david.sabbagh@inria.fr,denis.engemann@roche.com 背景:EEG 是监测麻醉深度的常用工具,但很少在生物医学研究中重新使用。本研究旨在探索在麻醉期间重新利用 EEG 来了解在失去意识的情况下大脑衰老的生物标志物。 方法:我们以大脑年龄估计为例。使用机器学习,我们重新分析了 323 名接受丙泊酚和七氟醚治疗的患者的 4 电极 EEG。我们应用最近发表的参考方法,将稳定麻醉的空间光谱特征纳入基于 EEG 的年龄预测中。当 95% 的总功率低于 8Hz 至 13Hz 之间的频率时,认为麻醉稳定。结果:我们考虑使用丙泊酚麻醉的中度风险患者(ASA <= 2)来探索预测性 EEG 特征。平均 alpha 波段功率(8-13Hz)可以提供年龄信息。然而,通过分析所有电极的整个功率谱(MAE = 8.2y,R2 = 0.65),可以实现最先进的预测性能。临床探索表明,大脑年龄与术中爆发抑制系统相关——通常与与年龄相关的术后认知问题有关。令人惊讶的是,高危患者(ASA = 3)的大脑年龄与爆发抑制呈负相关,这表明存在未知的混杂效应。二次分析显示,大脑年龄 EEG 特征是丙泊酚麻醉所特有的,这反映在七氟醚下的预测性能有限和跨药物泛化能力差。结论:全身麻醉中的脑电图可能实现最先进的脑年龄预测。然而,麻醉药物之间的差异会影响麻醉中脑电图再利用的有效性。为了释放脑电图监测在缺乏意识的情况下用于临床和健康研究的潜在潜力,收集具有精确记录的药物剂量的更大数据集将是关键的促成因素。关键词:全身麻醉、脑电图 (EEG)、脑老化、机器学习、爆发抑制、丙泊酚、七氟醚
1 CNR,´Ecole Polytechnique,IP Paris,PARAISEAU,法国2弗里德里希 - 亚历山大大学Erlangen-Nürnberg,电子技术材料研究所(I-Meet),Martensstr。7,91058德国Erlangen 3. Bavarian应用能源研究中心E.V.2,91058德国埃尔兰根5号南中国人技术大学,韦山路381号,天山区,广东省广省510641,中国人民6化学和生物化学系,安大略省温莎,温莎,安大略省3p4材料部93016-5050,美国美国8工程学院,香港科学技术大学,清水湾,九龙,香港9号,香港9号生物物理学系,量子生物物理学院,苏旺大学,Suwon Suwon University,Suwon,Suwon,Suwon,10韩国共和国10韩国柔性和印刷电子协会,Seoul,Seoul,Seelton,Seel of Koregor of Septroning of Septroning of Septroning of Septroning of Septratonion,Seeltor 98195,美利坚合众国12巴伐利亚应用能源研究中心E.V.