1。使用溶剂提取和研究影响Crystallite size-https://iopscience.org/article/10.10.1088/2053-1591/abc2df 2。大规模P-Type的制造75%SB2TE3-25%BI2TE3热雾化和热等速度按下热电学材料和热等静态按下 - https://doi.org/10.1016/j.materresbull.2020.1020.110924 3.MOS2和N之间的协同作用,S-掺杂的石墨烯氧化石墨烯支持的钯纳米颗粒用于氢进化反应-https://doi.org/10.1016/j.matchemphys.2020.2020.123106 4。M@Pd(M = Ni,Co,Cu)的电催化研究支持N,S掺杂的S掺杂的氧化石墨烯对氢和氧气进化反应 - https://doi.org/10.1002/slct.202002200 5。分子印迹的聚苯胺分子受体基于分子的化学传感器,用于三聚氰胺 - https://doi.org/10.1002/jmr.2836 6。使用分子印刷的多丙二醇 - 氧酸作为分子识别元件 - https://doi.org/10.4028/www.scientific.scientific.net/nhc.29.61 7。共晶复合材料(BI,SB)2TE3/TE热电材料的机械和热电特性
摘要:将二氧化碳转化为化学品和燃料是当前学术界和工业研究的一个关键领域,其中热催化加氢制甲醇是最先进的路线之一。最近,结合行星边界框架的生命周期分析证实了该过程的可持续性,强调需要更便宜的二氧化碳和可再生氢气,以及一种具有高活性、选择性和耐久性的催化系统来满足经济要求。本文回顾了我们的研究工作,旨在从原子水平上了解突破性 In 2 O 3 基催化系统中活性位点的电子和几何特性,以指导其开发。深入的机理阐明表明,有限的氢活化能力以及水驱动烧结是纯 In 2 O 3 的局限性。通过共沉淀添加少量钯成功解决了前者,形成了牢固锚定在氧化物晶格上的微小簇,从而实现了前所未有的持续甲醇生产率。使用单斜氧化锆作为载体,使 In 2 O 3 在二维纳米结构中高度分散,诱导 In 2 O 3 上形成额外的活性位点,并有助于 CO 2 活化,为进一步提高活性和解决 In 2 O 3 烧结问题提供了一种有效的方法。总的来说,我们的研究结果为合理设计一种负载型和促进型 In 2 O 3 催化剂奠定了坚实的基础,具有大规模应用的光明前景。
摘要 . 首先将水杨醛与乙二胺以 1:2 的摩尔比缩合制备偶氮席夫碱配体 (L1),然后将制备的亚胺化合物 (S1) 与 2,5-二氯苯胺反应,合成了一种新的 Ni(II)、Pd(II) 和 Pt(II) 配合物,并用于制备含有金属离子 Ni(II)、Pd(II) 和 Pt(II) 的配合物。利用紫外可见光、红外和核磁共振、摩尔电导、元素分析和质谱研究了合成化合物的结构特征。元素分析结果表明 [M:L] 化学计量为 1:1。根据摩尔电导研究,制备的所有最终产品都不具有电解性质。根据光谱研究,Ni(II)、Pd(II) 和 Pt(II) 的配合物可能具有方平面几何形状。然后评估了 Pd(II)、Ni(II) 和 Pt(II) 配合物对不同类型的革兰氏阴性菌 [ 大肠杆菌 ( ATCC 25922 )] 和阳性菌 [ 金黄色葡萄球菌 ( ATCC 25923 )] 的抗菌活性,结果显示对这些细菌具有良好的显著性。通过研究的 PC3 细胞系对正常细胞 WRL-68 来检查钯配合物对前列腺恶性细胞的细胞毒性作用。将使用 MOE 软件研究这些配合物的目标微生物的分子对接。
摘要 癌症仍然是全球主要的健康问题,需要现代诊断和治疗技术。纳米粒子 NPs 因其独特的生物医学特性而成为癌症管理的有前途的工具。NPs 的生物学特性使其非常适合成像、靶向药物输送和治疗诊断应用。这些特性包括其体积小、表面积与体积比高和表面灵活。银、铜 (Cu)、硒 (Se) 和钯 (Pd) 等金属基 NPs 在成像、药物输送和靶向治疗领域显示出治疗癌症的良好前景。金属基 NPs 具有独特的优势,例如靶向性提高、药物释放受控和多模态成像特性。NPs 有可能通过早期检测改善癌症诊断,并通过改进的成像方式更精确地表征肿瘤。基因治疗、免疫调节剂和化疗药物都可以通过使用 NPs 灵活输送系统直接输送到肿瘤位置。当 NPs 被靶向配体(如肽或抗体)功能化时,它们可以选择性地与癌细胞结合,从而改善药物积累并减少脱靶效应。刺激响应型 NPs 能够响应肿瘤微环境内的特定刺激而释放治疗粒子,从而改善治疗效果。关键词 癌症、纳米粒子、生物医学特性、铜
如今,纳米技术已广泛传播,并且在许多领域,尤其是医疗领域中起着重要作用。纳米颗粒(NP)具有独特的物理化学特性,从而提供了其他活动,这些活动鼓励它们在许多应用中使用。纳米颗粒可以通过三种主要方法合成:化学,物理和生物学。最好的方法是被认为是绿色,可持续,环保和经济的生物综合。这取决于生物或其提取物,包括植物,细菌,藻类,真菌和酵母,而不是有毒化学物质。酵母是有前途的微生物,最近引起了许多研究人员的注意,发现它们在纳米颗粒的生物合成中的潜力,可以应用于不同的领域。许多研究证明了各种酵母菌物种合成各种金属和金属氧化物纳米颗粒的能力,无论是细胞内还是细胞外。这样的纳米颗粒包括银,金,硒,硫硫磺,锌硫,钯,钯,二氧化锰和二氧化钛纳米颗粒。酵母介导的纳米颗粒具有生物医学活性,例如抗癌,抗氧化剂,抗渗透性和抗菌剂。研究表明,酵母合成的纳米颗粒具有安全和无毒的特性。与使用细菌和真菌对NPS生物合成的研究相比,较少的研究重点是在NPS生物合成中使用酵母,这使其成为在生物合成和NPS应用中更科学发现的有前途的领域。本综述概述了涉及酵母介导的纳米颗粒的生物合成和生物医学应用的先前研究。
de Vriese的Pinus merkusii Jung的抽象松香是由Pine Sap的蒸馏过程产生的。高的印尼总产量将主要的衍生策略带入了几种衍生策略,以满足市场需求。abibietic Acid(AA)是松树松香中的主要化合物,在本研究中用作观察的对象。报告的转化的一般方法涉及使用钯(PD)和铂(PT)的催化剂。两者都是珍贵金属催化剂,用于将松香的氧化脱氢 - 芳香质化进行。合成的产物可提供高产量的脱氢培养基(DHA)衍生物。本文报告说,使用碘(I 2)的铜(锌)或铜(cu)等非卓越金属的催化剂(I 2)通过无氮(N 2)和氧气(O 2)进行反应,以进行经济,高效,有效的催化剂。发现隔离了类似的产品,包括几种副产品。在高温下,通过FECL 3 -I 2和Cu(No 3)2 .3H 2 O和ZnCl 2催化剂,在反应产物中采用光谱方法鉴定出四种化合物:7-羟基 - 脱水酸酸(5),1,7-二二氧化二氧化物(6), 。 7-异丙基-1-甲基苯乙烯-9-OL(7)和聚合物(8)。 这种修饰的松树松香主要用作合成橡胶工业,清漆,墨水,纸张尺寸等的乳化剂。 基于LC-MS/MS,UV-VIS和ATR-FTIR光谱法确定产品。 doi:10.15408/jkv.v8i1.22802 1。 简介。 7-异丙基-1-甲基苯乙烯-9-OL(7)和聚合物(8)。 这种修饰的松树松香主要用作合成橡胶工业,清漆,墨水,纸张尺寸等的乳化剂。 基于LC-MS/MS,UV-VIS和ATR-FTIR光谱法确定产品。 doi:10.15408/jkv.v8i1.22802 1。 简介。 7-异丙基-1-甲基苯乙烯-9-OL(7)和聚合物(8)。 这种修饰的松树松香主要用作合成橡胶工业,清漆,墨水,纸张尺寸等的乳化剂。 基于LC-MS/MS,UV-VIS和ATR-FTIR光谱法确定产品。 doi:10.15408/jkv.v8i1.22802 1。 简介。 7-异丙基-1-甲基苯乙烯-9-OL(7)和聚合物(8)。这种修饰的松树松香主要用作合成橡胶工业,清漆,墨水,纸张尺寸等的乳化剂。基于LC-MS/MS,UV-VIS和ATR-FTIR光谱法确定产品。doi:10.15408/jkv.v8i1.22802 1。简介关键词:阿比酸(AA),脱氢芳香化,脱氢饲料(DHA),氧化 - 脱氢,松木松香。
对冶金和材料科学领域的高温耐铝,水透明和生物甲状腺素的比较分析是一项有价值的研究。这些冶金过程被用来从各种来源提取金属,了解它们的差异和优势对于有效的金属恢复和可持续资源管理至关重要。从矿石,浓缩物和废料中提取和回收金属是冶金工业的基本过程。在可用的各种方法中,高分测铝,水透明和生物 - 羟基铝作为独特且广泛使用的方法。高温铝过程也称为干法,水均能铝过程称为湿法方法,而生物 - 氢铝过程称为生物介绍过程。干燥,湿和生物涉及方法之间的比较分析旨在探索,评估和对比这些方法,在电子废物(电子废物)中提取金属的背景下,阐明了它们的原理,应用和环境影响。电子废物或电子废物在全球范围内越来越多。电子垃圾包含无数有价值的金属,包括但不限于黄金,白银,铜和钯,以及危险物质,使其适当的管理至关重要。提取方法的选择在确定金属恢复,经济生存能力和环境影响的效率方面起着关键作用。这种比较分析的主要目的是提供对高分测铝,水透明和生物 - 氢铝的全面理解,因为它们与从电子废物中提取金属有关。通过检查这三种方法的原理,过程,选择性,能源需求,环境影响以及经济考虑,旨在将决策者,研究人员和行业专业人员告知可持续电子垃圾回收的最佳实践。
开发用于治疗钙调蛋白相关心血管或神经退行性疾病的新分子是一个有趣的目标。在这项工作中,我们引入了一种新的策略,采用了四个主要步骤:(1)靶分子的化学综合,(2)f o orster共振能量传递(FRET)生物传感器发展和新衍生物的体外生物学测定,(3)化学素质学模型的开发和体内活性预测和(4)对接研究。通过案例研究来说明此策略。首先,通过涉及构建4-溴化唑框架工作的一系列4叠取代的riluzole de Rivivation 1-3,及其通过钯催化或有机矿化学的进一步官能化。接下来,已经开发并使用了用于监测Ca 2 +依赖性CAM配体相互作用的FRET生物传感器,并将其用于riluzole衍生物的体外测定。特别是,对于4-甲氧基苯基二唑2B,观察到最佳抑制作用(80%)。此外,我们训练和验证了一个新的网络不变,信息融合,扰动理论和机器学习(NIFPTML)模型,以预测大脑不同区域中体内生物学活动参数的概率概况。接下来,我们使用该模型来预测体外研究的化合物的体内活性。最后,对Riluzole及其衍生物进行的对接研究为其与靶蛋白的结合构象提供了宝贵的见解,涉及钙调蛋白和SK4通道。在钙调蛋白抑制剂的药物发现过程中,这种新的组合策略可能有助于降低测定成本(动物,材料,时间和人力资源)。
当你读到这篇文章的时候,这场演出将不再是卡梅隆·麦金托什耗资 300 万英镑制作的新剧《雾都孤儿》,这场演出不会在每个周日增刊中播出,伦敦帕拉丁剧院也不再挤满了分包商——尽管希望票贩子和索要签名的人仍然会在外面徘徊。雾都孤儿!将会舒适地落户伦敦西区,每周以出色的表演和优美的音乐取悦八位观众。对我来说,制作期间、预演、众星云集的首演之夜,当然还有首演之夜的派对,这些记忆仍然记忆犹新——派对的情况略显模糊!雾都孤儿!可能是一部经典音乐剧,英国大部分人都熟知和喜爱它,因其 1960 年原版革命性的布景设计而闻名,并在电影中永垂不朽。但正如宣传所表明的那样,这是一部新作品,规模最大,延续了安德鲁·劳埃德·韦伯和卡梅隆·麦金托什十年来新音乐剧的风格。首演前三个月,剧组在剧院工作了三个月,在此之前,还在办公室和设计工作室工作了很长时间。首演之夜的派对很棒,但所有参与演出的人都值得拥有它!如果你觉得这听起来好像我比平时更多地参与了演出,那你是对的。8 月初的一个电话促成了我与该剧的制片经理 Kevin Eld 的会面,我被安排担任该剧的移动灯光程序员。我曾想过记日记,但最终没有。为什么?一位电影导演在最近的一次采访中发表了一句话,总结得最好:“在拍电影时,你不会回家睡觉,”他说,“你会逃回家,然后倒下”。剧院也是如此。日记从未被写过。因此,我提供了一系列音乐剧制作的快照。..
• 使用我们的全球计量经济模型 NiGEM,我们估计乌克兰冲突到 2023 年可能使全球 GDP 水平下降 1%,相当于全球 GDP 下降约 1 万亿美元(图 1),并使 2022 年全球通胀率上升 3%,2023 年上升约 2 个百分点。 • 俄罗斯和乌克兰是钛、钯、小麦和玉米等大宗商品的重要供应国,我们预计这些商品的用户(包括汽车、智能手机和飞机制造商)的供应链问题将加剧。 • 鉴于贸易联系和对俄罗斯能源和粮食供应的依赖,欧洲是受影响最严重的地区;新兴市场受到的影响小于发达经济体。 • 我们预计公共支出将增加,以支持大量来自乌克兰的寻求庇护者涌入,并增加军事支出,这将限制对欧洲 GDP 的不利影响,尽管两者都可能增加资源压力,从而导致通胀。 • 制裁给俄罗斯带来的成本被天然气和石油出口价格上涨部分抵消,但对经济的净影响将是负面的,预计俄罗斯 GDP 今年将收缩 1.5%,到 2023 年底将收缩 2.5% 以上。 • 预计俄罗斯通胀率今年将飙升至 20% 以上。西方通胀率将进一步走高,衰退风险加剧。 • 我们认为对英国的影响可能是 GDP 增长在 2022 年下降约 0.8% 至 4.0%,在 2023 年下降至 0.5%。 • 对于英国,我们现在预计 2022 年和 2023 年通胀率平均为 7%,高于我们 2 月份展望中的 5.3% 和 2.7%。 • 战争加剧了货币政策制定者面临的困境,因为它会加剧通胀,但会削弱增长并损害消费者和企业信心,而消费者和企业信心已经因新冠疫情引发的价格上涨而受到削弱。 • 我们建议各国央行谨慎行事,但要通过沟通表明加息的任何延迟都只是推迟,而不是取消。