已经创建了溢出机学习机翼性能(PALMO)数据库,以实现各种应用程序中的机翼性能的强大建模。数据库使用溢出仿真数据二阶精确,并在Spalart-Allmaras湍流闭合时在空间上精确精确。开发棕榈数据库的基础是翼型基座立方体。每个基本立方体都包含在一系列的MACH数字,雷诺数和攻击角度的范围内参数化的模拟数据。数据库的第一个版本包括NACA 4系机翼,在机翼厚度中具有参数化,从NACA 0006到NACA 4424。总共在NASA高端计算能力(HECC)超级计算机上运行了52,480个NACA 4系列计算,并且将相应的机翼性能系数嵌入本文档的附录中,以进行公共分布。这提供了涵盖广泛的航空航天设计应用程序的高级精确模拟数据,该应用使用户能够开发溢出质量的机翼性能查找表,而无需其他高性能计算。除了对航空航天车的工程设计和分析外,Palmo非常适合作为航空航天工程中机器学习方法开发和测试的基准数据集。下游替代模型可实现溢出质量的机翼性能预测,以预测数据库范围内的室内,厚度,马赫数,雷诺数和攻击角度的任何任意组合。
NASA的第4个新边界任务是Titan Dragonfly可重新定位的Lander。 这款同轴性四极管车将于2028年在泰坦的火箭上发射。 在重力辅助地球飞行和大约6年的运输速度之后,蜻蜓将在2034年左右进入泰坦大气层,目的是探索泰坦的益生元化学和可居住性。 自2016年以来,这种独特应用程序的多旋动设计一直在不断发展,例如泰坦(Titan)在95开尔文(-288 F)的低温气氛,重力为14%的地球大气密度为440%的标准海平面空气的440%,以及在所有这些条件下都无法在所有这些条件下测试整个系统。 本文重点介绍了蜻蜓着陆器的转子设计方面,并为多种飞行条件介绍了多运动设计优化的新颖框架。 该方法论利用机器学习方法,并在蜻蜓的背景下进行了证明。 首先提出了一种新的溢出机学习机翼性能(PALMO)数据库。 然后将Palmo包裹在贝叶斯优化框架内,并应用于四连杆系统(蜻蜓兰德勒的一侧)。 使用CAMRAD-II综合分析软件对优化的每次迭代生成培训数据,以评估多个相关飞行条件下连续的转子设计。 在CAMRAD-II中分析了大约900个转子设计,发现了4旋转系统的最佳设计,该设计需要对Palmo替代模型进行900万个查询。NASA的第4个新边界任务是Titan Dragonfly可重新定位的Lander。这款同轴性四极管车将于2028年在泰坦的火箭上发射。在重力辅助地球飞行和大约6年的运输速度之后,蜻蜓将在2034年左右进入泰坦大气层,目的是探索泰坦的益生元化学和可居住性。自2016年以来,这种独特应用程序的多旋动设计一直在不断发展,例如泰坦(Titan)在95开尔文(-288 F)的低温气氛,重力为14%的地球大气密度为440%的标准海平面空气的440%,以及在所有这些条件下都无法在所有这些条件下测试整个系统。本文重点介绍了蜻蜓着陆器的转子设计方面,并为多种飞行条件介绍了多运动设计优化的新颖框架。该方法论利用机器学习方法,并在蜻蜓的背景下进行了证明。首先提出了一种新的溢出机学习机翼性能(PALMO)数据库。然后将Palmo包裹在贝叶斯优化框架内,并应用于四连杆系统(蜻蜓兰德勒的一侧)。使用CAMRAD-II综合分析软件对优化的每次迭代生成培训数据,以评估多个相关飞行条件下连续的转子设计。在CAMRAD-II中分析了大约900个转子设计,发现了4旋转系统的最佳设计,该设计需要对Palmo替代模型进行900万个查询。此演示案例使用统一的流入,在114个CPU内核中评估了10,000,000个潜在的候选转子设计,并在27.8小时内使用规定的唤醒模型在27.8小时内评估了10,000个潜在的转子设计。因此,这项工作可以实现中心转子设计优化,而无需访问高性能计算。
https://www.specs.net/index.php 9。 天然产品集合。 Microsource Discovery System Inc. 2022年7月23日访问。http://www.msdis covery.com/natpr od.html 10。 Berman HM,Westbrook J,Feng Z等。 蛋白质数据库。 核酸res。 2000; 28:235-242。 doi:10.1093/nar/28.1.235 11。 Trott O,Olson AJ。 自动库克Vina:通过新的评分功能,有效的优化和多线程提高对接的速度和稳定性。 J Comput Chem。 2010; 31(2):455-461。 doi:10.1002/jcc.21334 12。 Schrödinger软件。 Schrödinger,L.L.C。,纽约,纽约,美国2020年。 13。 McNutt,Francoeur P,Aggarwal R等。 gnina 1.0:深度学习的分子对接。 J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。https://www.specs.net/index.php 9。天然产品集合。Microsource Discovery System Inc. 2022年7月23日访问。http://www.msdis covery.com/natpr od.html 10。Berman HM,Westbrook J,Feng Z等。蛋白质数据库。核酸res。2000; 28:235-242。doi:10.1093/nar/28.1.235 11。Trott O,Olson AJ。自动库克Vina:通过新的评分功能,有效的优化和多线程提高对接的速度和稳定性。J Comput Chem。 2010; 31(2):455-461。 doi:10.1002/jcc.21334 12。 Schrödinger软件。 Schrödinger,L.L.C。,纽约,纽约,美国2020年。 13。 McNutt,Francoeur P,Aggarwal R等。 gnina 1.0:深度学习的分子对接。 J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。J Comput Chem。2010; 31(2):455-461。doi:10.1002/jcc.21334 12。Schrödinger软件。Schrödinger,L.L.C。,纽约,纽约,美国2020年。 13。 McNutt,Francoeur P,Aggarwal R等。 gnina 1.0:深度学习的分子对接。 J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。Schrödinger,L.L.C。,纽约,纽约,美国2020年。13。McNutt,Francoeur P,Aggarwal R等。gnina 1.0:深度学习的分子对接。J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。J Chem。2021; 13(1):1-20。doi:10.1186/ s13321-021-00522-2 14。 div>Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。Curr Comput-Aid药物。2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。2011; 7(2):146-157。doi:10.2174/157340911795677602 15。Durrant JD,McCammon JA。分子动力学模拟和药物发现。BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。BMC Biol。2011; 9(1):1-9。doi:10.1186/1741-7007-9-71 16。案例DA,Betz RM,Cerutti DS等。琥珀色。加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。加利福尼亚大学; 2016。17。Lindorff-Larsen K,Piana S,Palmo K等。改善了琥珀FF99SB蛋白力场的侧链旋转电位。蛋白质。J Chem Phys。2010; 78(8):1950-1958。doi:10.1002/prot.22711 18。Horn HW,Swope WC,Pitera JW等。开发了改进的生物分子模拟的四个位点水模型:tip4p-ew。2004; 120(20):9665-9678。 doi:10.1063/1.1683075 19。 Beauchamp KA,Lin YS,Das R,Pande vs。蛋白质场是否越来越好? 在524个不同的NMR测量值上进行系统基准。 J化学理论计算。 2012; 8(4):1409-1414。 doi:10.1021/ct2007814 20。 Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。 J Chem Inf模型。 2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2004; 120(20):9665-9678。doi:10.1063/1.1683075 19。Beauchamp KA,Lin YS,Das R,Pande vs。蛋白质场是否越来越好? 在524个不同的NMR测量值上进行系统基准。 J化学理论计算。 2012; 8(4):1409-1414。 doi:10.1021/ct2007814 20。 Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。 J Chem Inf模型。 2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。Beauchamp KA,Lin YS,Das R,Pande vs。蛋白质场是否越来越好?在524个不同的NMR测量值上进行系统基准。J化学理论计算。2012; 8(4):1409-1414。 doi:10.1021/ct2007814 20。 Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。 J Chem Inf模型。 2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2012; 8(4):1409-1414。doi:10.1021/ct2007814 20。Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。J Chem Inf模型。2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2018; 58(5):1037-1052。doi:10.1021/acs。JCIM.8B00026 21。Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。一般琥珀色场的开发和测试。J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。J Comput Chem。2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2004; 25(9):1157-1174。doi:10.1002/jcc.20035 22。Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。Comput Biol Med。2021; 134:104462。 doi:10.1016/j。compbiomed.2021.104462 23。Jakalian A,Bush BL,Jack DB,Bayly CI。快速,有效地产生高质量的原子电荷。AM1-BCC模型:I。方法。J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。J Comput Chem。2000; 21(2):132-146。doi:10.1002/jcc.10128 24。Jakalian A,Jack DB,Bayly CI。高,有效地生成高 -