1个生物信息学和结构蛋白质组学,国家癌症研究所。Genova动机工作流程系统是协调对标准化Web服务数据并检索数据的有效选择。已经开发了用于生物信息学的各种工作流管理系统(WMS)。然而,创建工作流程可能很困难,因为它暗示了可用的Web服务和数据格式的知识,而不是提及编程技能。工作流颁布门户。Biowep是生物信息学的工作流颁布门户,已在线向所有研究人员提供[1,2]。它允许进行预定义的工作流以及工作流执行和相关结果的存储和检索。它通过生物信息学任务的本体来支持工作流程的注释。搜索和选择工作流程可以根据其注释进行。BiOwep使用开源:WMS Taverna [3]和MySQL。在这里,我们提出了BiOWEPS WorkFlow存储库管理器(WFRM),这是一个Web应用程序,用于管理工作流存储库中的工作流程。wfrm支持用XSCUFL描述的半自动,有效的插入,更新和注释,这是Mygrid倡议中开发的工作流语言[4,5]。方法WFRM已被实施为BioWep管理的前端。它是通过使用Javaserver页面(JSP)技术编写的,该技术提供了一种快速,简化,与服务器和平台无关的方式来创建动态Web内容。现在,系统维护是简单而直观的。WFRM提供了一个以用户为中心的接口,用于上传用XSCUFL语言编写的工作流程。它包括一个基于MySQL数据库的Java类后端组件,该组件将接口与工作流存储库连接起来。上传的工作流程首先存储在工作目录中,然后通过使用一组基于SAX的类进行句法验证并最终解析。这些返回工作流对客户端应用程序的值,因此在数据库中促进了以应用程序驱动的基本数据的插入,例如工作流量名称,描述和作者。其他信息,例如Workflows应用程序域,必须由用户添加。在我们的DB模式中,我们称之为版本的工作流程及其实现之间有区别。工作流程仅在其目标的基础上在概念上描述,并且没有指任何实际文件。而是将每个版本严格链接到一个文件,可以制定并给出结果。版本可能会有所不同,例如,对于访问的Web服务,提供替代方案,但同等,服务和本地详细处理程序,可以通过保持相同的功能来修改它们。因此,WFRM在上传新工作流程之间有一个区别,在这种情况下,关联的文件将分配给工作流的第一个版本,或者是现有工作流的新版本。提交的文件包括处理器的描述,其链接以及工作流的整体输入和输出。通过生物信息学数据和任务的分类,WFRM在半自动上有效地注释了此信息。我们选择注释总体工作流程和最重要的处理器(将其选择留给用户)。然后将注释插入数据库中,而工作流程本身不会更改。java applet为研究人员提供了探索性工具,用于识别和选择注释应用程序域,详细说明任务以及输入和输出数据类型的最佳定义。可以随时更新(插入,修改或删除)注释。我们对生物信息学任务和数据的分类来自原始的Mygrid本体[6],这些本体已通过使用不同的层次结构进行了重组,并通过添加生物资源和图像数据类型来扩展。在搜索存储库中的工作流程时也使用此注释。结果,我们介绍了WFRM,这是一种用户友好的接口,该界面是用于在BiOWEP WorkFlow存储库中高效且半自动管理信息的工具。之前,在存储库中插入工作流程是一个复杂且耗时的过程,需要手动更新数据库内容。工作流程基本数据已收集,处理器由适当的本体学注释,并且数据库以连贯和有效的方式更新。
以及肝组织学检查(如果有)。接受免疫抑制治疗或曾前往 HEV-1 和 -2 感染流行地区的患者被排除在外。在 2020 年 2 月 1 日至 2022 年 10 月 31 日期间,回顾性 [ 4 ] 和前瞻性地纳入了有症状的急性肝炎患者和 HEV 相关 PTS 患者。参与的瑞士献血中心(洛桑、伯尔尼、苏黎世)还回顾性和前瞻性地纳入了 2021 年 1 月 1 日至 2022 年 10 月 30 日期间通过基于 PCR 的常规献血筛查发现的无症状 HEV 感染献血者。在此期间(2021 年 1 月至 5 月),瑞士联邦公共卫生局记录了一波异常的急性 HEV 感染,主要由基因型 3h_s 引起。[ 18 ]
2020 年头几个月在全球蔓延的 Covid-19 疫情迫使许多政府采取了隔离措施。这些干预措施对世界经济产生了巨大影响,在许多国家引发了前所未有的就业破坏。仅在美国,2020 年 4 月就失去了 2000 万个工作岗位,在疫情爆发的头六周内申请失业救济人数超过 3000 万人(NYT,2020a、b)。在加拿大,自 COVID-19 经济停摆开始至 4 月中旬,总就业人数下降超过 300 万个(加拿大统计局,2020 年)。世界各地都出现了类似的影响,尤其是在欧洲。在法国,封锁期间有超过 1000 万名员工(私营部门的一半员工)被解雇(法国24,2020 年)。
随着 GPU 逐渐脱离其传统领域(游戏、多媒体和消费市场),其可靠性引起了人们的关注和质疑 [3]。目前,活跃的 GPU 研究旨在评估可靠性并确定可行的改进方法。大多数研究都强调 GPU 对瞬态故障的高度敏感性 [11、13、16、24、27、32、44、47、51],这是由 GPU 拥有的大量可用资源和采用的先进半导体技术造成的。此外,GPU 的并行管理和控制单元已被证明尤为关键,因为它们的损坏会影响多个线程 [24、38]。GPU 的并行性在性能方面提供了无可置疑的优势,因此,它是该设备最脆弱的特性之一。 GPU 制造商已提供了有效的可靠性对策,例如改进存储单元设计[39]、添加纠错码[15]、用于故障测试的硬件结构[25],以及提出软件校验和[21]或多线程冗余[49]。现有的大多数 GPU 可靠性研究都针对瞬态故障及其作为软件错误的影响,而永久性故障基本上未被探究。这是有道理的,因为在大多数应用中,GPU 的预期寿命不超过两年。然而,用于汽车、航空航天和军事应用的 GPU 预计可以使用很多年。此外,HPC 级 GPU 的典型工作条件,例如过载、高温、高频率运行和技术节点缩小,都会加速老化[23],甚至会使设备暴露于地面辐射引起的永久性故障[20]。延长的使用时间和过早的老化突然引发了人们对 GPU 及其应用程序在出现永久性故障时如何表现的疑问。至关重要的是,只有少数初步研究针对 GPU 中的永久性故障 [ 17 , 26 , 46 ],而没有一项研究关注并行性管理单元。在本文中,我们旨在通过提出一种方法来针对一个完全未探索的方面显著提高对 GPU 可靠性的理解:负责并行性管理的 GPU 电路中永久性故障的影响。我们决定专注于调度器、提取和解码器单元,因为 (a) 它们是主要针对并行操作进行优化的特殊 GPU 资源,(b) 影响它们的永久性故障将对代码执行产生不小的影响,(c) 它们无法轻易通过纠错码或硬件冗余进行保护,(d) 它们很可能
Daniele Giordan 1 , Davide Notti 1 , Alfredo Villa 2 , Francesco Zucca 3 , Fabiana Calò 4 , Antonio Pepe 4 , Furio Dutto 5 , Paolo Pari 6 , Marco Baldo 1 , Paolo Allasia 1
手稿收到2022年5月6日;修订于2022年7月5日; 2022年7月15日接受。出版日期2022年8月16日;当前版本的日期2022年9月8日。这项工作得到了欧洲领导力(ECSER)联合企业的电子组件和系统的支持(JU),根据赠款101007247; JU获得了欧盟2020年Horizon的研究与创新计划的支持,以及芬兰,德国,爱尔兰,瑞典,意大利,奥地利,冰岛和瑞士的支持。副编辑协调审核过程的是Chao Tan博士。(通讯作者:Roberta Ramilli。)Roberta Ramilli,Marco Crescentini和Pier Andrea Traverso在电气,电子和信息工程部(DEI),“ G。Marconi,“博洛尼亚大学,意大利博洛尼亚40136(电子邮件:Roberta。) ramilli@unibo.it; m.crescentini@unibo.it; pierandrea.traverso@unibo.it)。 Francesco Santoni,Alessio de Angelis和Paolo Carbone与佩鲁吉亚大学工程系,意大利佩鲁吉亚06125(电子邮件:francesco.santoni@unipg.it; Alessio.deangelis@deangelis@unipg.it; Paolo; Paolo; Paolo。 carbone@unipg.it)。 数字对象识别10.1109/tim.2022.3196439Marconi,“博洛尼亚大学,意大利博洛尼亚40136(电子邮件:Roberta。ramilli@unibo.it; m.crescentini@unibo.it; pierandrea.traverso@unibo.it)。Francesco Santoni,Alessio de Angelis和Paolo Carbone与佩鲁吉亚大学工程系,意大利佩鲁吉亚06125(电子邮件:francesco.santoni@unipg.it; Alessio.deangelis@deangelis@unipg.it; Paolo; Paolo; Paolo。carbone@unipg.it)。数字对象识别10.1109/tim.2022.3196439
Daniele Giordan 1 , Davide Notti 1 , Alfredo Villa 2 , Francesco Zucca 3 , Fabiana Calò 4 , Antonio Pepe 4 , Furio Dutto 5 , Paolo Pari 6 , Marco Baldo 1 , Paolo Allasia 1
Markus Vincze Philipp Ausserlechner,Dominik Bauer,Hrishikesh Gupa,Bernhard Neuberger,Tessa Pulli,Paolo Sebeto,Paolo Sebeto,Markus Suchi,Stefan Thalhammer,Jean-Baptiste Weibel Weibel Weibel
Genny Zero的故事与其创作者Paolo Badano的故事无情地联系在一起,Paolo Badano是一位企业家,由于车祸,他被限制在轮椅上了20多年。多年来,Paolo寻求一种解决方案,可以使他自由独立地行动,而无需牺牲美学或表演。对市场上可用的选项不满意,2009年,他发现了一种自动平衡的车辆,可以骑着站立,这使他的潜力使他着迷。从直觉和多年的研发中,创建Genny的想法诞生了,这是一种双轮,自动平衡的电动汽车,专为流动性降低和微型搬运的人而设计。
化学和生物学系“ Adolfo Zambelli”,萨勒诺大学,通过Giovanni Paolo II,84084,意大利Fisciano,B卫生环境工程部(种子),萨勒诺大学土木工程系(种子),通过Giovanni Paolo II,84084 FISCONISTIS Paolo II,84084,意大利Fisciano,D膜与高级水技术中心(CMAT),化学与石油工程系,哈利法科学技术大学,P。O.box 127788,阿布扎比,阿拉伯联合酋长国e环境工程系萨克拉曼多S/N,04120 Almeria,西班牙