1 气候变化,联合国人类安全基金,https://www.un.org/humansecurity/climate-change/(上次访问时间为 2021 年 11 月 24 日)。2 全球能源转型地缘政治委员会和国际可再生能源机构,《新世界:能源转型的地缘政治》8(2019 年),https://www.irena.org/- /media/files/irena/agency/publication/2019/jan/global_commission_geop olitics_new_world_2019.pdf;参见国际可再生能源机构、国际能源机构和 21 世纪可再生能源政策网络、《过渡时期的可再生能源政策》11(2018 年)。 2015年,《巴黎气候变化协定》提出了将全球变暖限制在2摄氏度以下的国际气候目标。同上,第15页。3 E MMA J OHNSON、LUCY MCK ENZIE 和 MATTHEW S AUNDERS,《可再生能源争端国际仲裁案》第 8 卷(2021 年)。
438 高禁带约束振动结构与声子晶体离散变量拓扑优化 袁亮 博士 152 大连大学
图 1:部件编号订购选项 ................................................................................................................................ 5 图 2:器件引脚排列 ................................................................................................................................ 7 图 3:142 球 FBGA ................................................................................................................................ 9 图 4:142 球 FBGA ................................................................................................................................ 10 图 5:功能框图 ...................................................................................................................................... 11 图 6:上电行为 ...................................................................................................................................... 12 图 7:写操作 ...................................................................................................................................... 17 图 8:写操作(E# 控制) ................................................................................................................ 18 图 9:总线周转操作 ................................................................................................................................ 19 图 10:读操作 ........................................................................................................................................ 20 图 11:4 字异步页面模式与传统异步模式的比较 ...................................................................................... 21 图 12:页面模式功能框图 ................................................................................................................ 22 图13:异步页读操作 ...................................................................................................................... 22 图 14:异步页写操作 ...................................................................................................................... 23 图 15:页写到单次写时序图 .............................................................................................................. 23 表 1:技术比较 ...................................................................................................................................... 4 表 2:有效组合列表 ................................................................................................................................ 6 表 3:信号描述 ...................................................................................................................................... 7 表 4:上电/断电时序和电压 ................................................................................................................ 13 表 5:器件初始化时序和电压 ................................................................................................................ 14 表 6:建议工作条件 ........................................................................................................................ 14 表 7:引脚电容 ........................................................................................................................................................................................................................ 14 表 8:直流特性 ...................................................................................................................................... 15 表 9:磁抗扰度特性 .............................................................................................................................. 15 表 10:交流测试条件 ............................................................................................................................. 15 表 11:绝对最大额定值 ...................................................................................................................... 16 表 12:写操作(W# 控制) ............................................................................................................. 17 表 13:写操作(E# 控制) ............................................................................................................. 18 表 14:写操作 ................................................................................................................................ 19 表 15:读操作 ................................................................................................................................ 20 表 16:页面模式交流时序 ................................................................................................................ 24 表 16:耐用性和数据保留 ................................................................................................................ 24 表 17:热阻规格 .......................................................................................................................... 25........................................................................... 24 表 16:耐久性和数据保留时间 ...................................................................................................... 24 表 17:热阻规格 ...................................................................................................................... 25........................................................................... 24 表 16:耐久性和数据保留时间 ...................................................................................................... 24 表 17:热阻规格 ...................................................................................................................... 25
摘要 - 由于电缆的固有灵活性和弹性,电缆驱动的并行机器人(CDPR)通常对模型和动态控制具有挑战性。将在线几何可重新配置性的附加包含在CDPR上导致具有高度非线性动力学的复杂不确定的系统。必要的(数值)冗余分辨率需要多个优化的层,以使其对实时控制的应用程序计算效率过高。在这里,深厚的强化学习方法可以提供一个无模型的框架来克服这些挑战,并可以提供实时的动态控制。本研究讨论了动态轨迹跟踪中无模型DRL实现的三个设置:(i)具有固定工作空间的标准非冗余CDPR; (ii)在可重构CDPR上具有冗余分辨率的端到端设置中; (iii)在一种脱钩的方法中,分别解决运动学和驱动裁员。
平行谐振永久性磁铁同步发电机(PMSG)系统,该系统由柴油发动机组成,带有谐振平行电容器的PMSG和二极管全波电流,可能可能应用于串联混合车辆牵引系统,这是由于其高成本和低成本和低成本和低成本而导致的。通常,使用脉冲宽度调制(PWM)转换器控制串联混合车辆牵引系统中的发电系统。但是,无法使用PWM转换器调整并联谐振PMSG混合牵引系统中的功率发电系统,并且需要采用新的动力生成控制方法。尚未开发一种考虑电池恶化,发动机启动数量和燃油经济性的适当发电控制方法。因此,本研究提出了一种适用于串联混合车辆牵引系统的平行谐振PMSG系统的发电控制方法。
涉及多级纠缠的量子网络允许在量子通信,量子传感和分布式量子计算中进行令人兴奋的应用。通过光通道非本地纠缠产生的效率随着网络节点之间的距离而呈指数下降。我们提出了一种平行且预示的协议,用于在多个节点上生成分布式多Qualbit纠缠。这是通过使用高维单光子来实现的,该光子用作连接所有固定量子位(即硅胶合电子旋转)的普通数据总线,每个量子都与单面光腔耦合。平行的多等级纠缠状态与单个光子与每个固定值相互作用并通过每个光子调制电路的检测预示着它。此并行协议可以显着提高分布式纠缠生成的效率,并为分布式多端量子网络提供可行的途径。
DNA测序技术和生物毒素格式的进步揭示了微生物在医学和农业中产生具有不同用途的结构复杂的特殊代谢物的巨大潜力。然而,这些分子通常会重新检查结构修饰以优化它们以供应用,这可能是使用合成化学很难的。生物工程提供了一种互补的结构修饰方法,但通常会因遗传性棘手性而受到影响,并且需要对生物合成基因功能的理解。异源宿主中专门的代谢产物生物合成基因簇(BGC)可以解决这些问题。然而,当前的BGC克隆和操作方法是不具体的,缺乏实现的,并且可能非常昂贵。在这里,我们报告了一个基于酵母的平台,该平台利用了与转换相关的重组(TAR)进行高效率捕获和对BGC的并行操作。作为概念证明,我们克隆,杂酚表达和遗传分析了与结构相关的非核糖体肽epone-epone-epone- mycin和tmc-86a的BGC,阐明了这些重要蛋白质的生物合成中的模棱两可。我们的结果表明,epone- mycin BGC还指导TMC-86A的产生,并揭示了启动这两种代谢产物组装的对比机制。此外,我们的
摘要:传统的认知科学作为一种跨学科的研究方法,主要采用实验、归纳、建模和验证范式,而这些模型有时并不适用于信息物理社会系统(CPSS),因为该系统中的大量人类用户涉及严重的异质性和动态性。为了减少以人为中心的系统中人与机器之间的决策冲突,我们提出了一种称为并行认知的新研究范式,该范式利用智能技术体系分三个阶段研究认知活动和功能:基于人工智能认知系统(ACS)的描述性认知、通过计算审议实验的预测性认知和通过并行行为处方的规范性认知。为了使这些阶段不断在线迭代,我们进一步提出了一种基于心理模型和用户行为数据的混合学习方法来自适应地学习个体的认知知识。在城市出行行为处方和认知视觉推理两个代表性场景上的初步实验表明,我们的并行认知学习对于人类行为处方是有效可行的,从而可以促进复杂工程和社会系统中的人机合作。
(HbO) 和脱氧 (HbR) 血红蛋白可以分别评估 HbO 和 HbR 的浓度变化。1 尽管 fNIRS 信号被认为对运动具有相对耐受性,2 但是由于运动伪影引起的光强度突然变化,数据质量可能会降低。3 结果表明,两种波长的动态特性为伪影检测和校正提供了重要信息。4 然而,当前用于运动伪影校正的技术(例如小波滤波、分解、样条插值等)通常假设两种波长的行为在时间上相似,因此无法利用两种波长提供的结构化信息。5 – 7 二维 (2D) 分析要求对具有更多维度的数据(例如 fNIRS 数据)在处理之前进行表面展开,例如分别处理两种波长或 HbO 和 HbR。因此,其中一些二维分析工具被迫施加其他非生理约束,例如主成分分析(PCA)中的正交性或独立成分分析(ICA)的统计独立性。尽管有几种方法可以实现 PCA,例如降维、分类、从信号分解的角度来看,PCA 旨在提取所谓的主成分,即可解释 fNIRS 中信号活动最大方差的成分。6、7、10、11 在时间 PCA 中,数据被分解为成分之和,每个成分由两个向量的乘积形成:一个代表时间主成分,另一个代表相应的地形(每个通道的分数)。PCA 的一个基本问题是仅由两个特征(时间和空间)定义的成分不是唯一确定的。因此,不同成分的对应时间特征之间必须具有正交性。 7、12、13然而,脑信号之间的正交性是一种非生理约束。即使有这种限制,提取的主成分也不是完全唯一的,因为任意旋转轴不会改变数据的解释方差。这导致研究人员使用不同的数学标准作为选择特定旋转的基础(例如,Varimax、Quartimax 和 Promax)。在 fNIRS 中,PCA 还被应用于目标时间间隔(tPCA),即仅在与发音或其他头部运动相关的伪影发生的期间,而不是在整个未分割的信号期间。3、14与基于小波的滤波和样条插值相比,这种类型的有针对性的校正可以产生更好的信号质量,同时也降低了改变信号整体完整性的风险。3虽然 PCA 非常常见且易于使用,一些作者已经讨论了其作为伪影校正方法的缺陷和注意事项。5、15
电源电压,V DD1 、V DD2 和 V DD3 (见注 1) 6.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .输出电压范围,VO −0.3 V 至 V DD + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 峰值输入电流(任何数字输入) ± 10 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .峰值总输入电流(所有输入)± 30 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 工作自然通风温度范围,TA:TLC1550I,TLC1551I −40 ° C 至 85 ° C . . . . . . . . . . . . . . . . . . . . TLC1550M −55 ° C 至 125 ° C . . . . . . . . . . . . . . . . . . . 存储温度范围,T stg −65 ° C 至 150 ° C . . . . . . . . . . . . . . . . . . . . . 10 秒外壳温度:FK 或 FN 封装 260 ° C . . . . . . . . . . . . . . . ..................................................................................................................................... 距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒:J 或 NW 封装 260 °C ....................................................................................................................................
