资料来源:截至 2024 年 12 月 31 日的 Parametric、Bloomberg 和 FactSet。以上信息是对本文所含综合指数全球投资业绩标准 (GIPS ® ) 报告的补充,是本材料的组成部分。仅供说明之用;不构成买卖任何证券的要约。综合数据基于所示期间内有资格纳入综合指数的所有付费全权委托账户的总资产。业绩反映了股息和其他收益的再投资。不到一年期间的业绩尚未年化。Parametric 计算和报告的业绩、成本基础、未实现损益和已实现损益可能与基于某些证券的不同会计程序、报告日期或估值方法的官方托管报表不同。过去的表现并不代表未来的结果。不可能直接投资指数;它们不受管理,不反映费用、税金和开支的扣除。
摘要:最近关于混合量子-经典机器学习系统的研究已证明,利用参数化量子电路 (PQC) 解决具有挑战性的强化学习 (RL) 任务是成功的,并且与经典系统(例如深度神经网络)相比具有可证明的学习优势。虽然现有研究展示并利用了基于 PQC 的模型的优势,但 PQC 架构的设计选择以及不同量子电路在学习任务中的相互作用通常尚未得到充分探索。在这项工作中,我们引入了一种用于参数化量子电路 (MEAS-PQC) 的多目标进化架构搜索框架,该框架使用具有量子特定配置的多目标遗传算法来高效搜索最佳 PQC 架构。实验结果表明,我们的方法可以找到在三个基准 RL 任务上具有出色学习性能的架构,并且还针对其他目标进行了优化,包括减少量子噪声和模型大小。进一步分析量子操作的模式和概率分布有助于确定混合量子-经典学习系统的性能关键设计选择。
通过皮质视觉神经植物对大脑的直接电刺激是一种有前途的方法,可以通过诱导对局部光(称为“磷烯”的局部光)感知来恢复视力障碍的基本视力。除了将复杂的感官信息凝结成低时空和空间分辨率下的有意义的刺激模式外,为大脑提供安全的刺激水平至关重要。我们提出了一个端到端框架,以学习安全生物学约束中最佳刺激参数(振幅,脉冲宽度和频率)。学习的刺激参数将传递给生物学上合理的磷酸模拟器,该模拟器考虑了感知到的磷光的大小,亮度和时间动力学。我们对自然导航视频的实验表明,将刺激参数限制为安全水平不仅可以维持磷光元素的图像重建中的任务性能,而且始终导致更有意义的磷光视觉,同时提供了对最佳刺激参数范围的见解。我们的研究提出了一种刺激生成的编码器,该编码器学习刺激参数(1)满足安全性约束,(2)使用高度实现的磷光模拟器来最大化图像重建和磷光解释性的合并目标,以计算刺激的时间动力学。端到端学习刺激参数以这种方式实现了关键的生物安全限制以及手头硬件的技术限制。
摘要 ArianeWorks 是由法国国家空间研究中心和阿丽亚娜集团发起的创新平台,它加速了 Themis 的开发,Themis 是一种由液氧和生物甲烷推动的低成本可重复使用的火箭级演示器,为 2030 年的欧洲发射系列铺平了道路。根据其股东的生态设计愿景,ArianeWorks 在 Themis 计划中启动了生态设计战略的实施。在此背景下,本研究介绍了基于半可重复使用发射器的发射服务的生命周期评估,该发射器源自 Themis 并在圭亚那航天中心运行,该评估发生在 Themis 的早期设计阶段。该分析意味着开发一个特定的框架来解释下级的可重复使用性,需要使用经过调整的功能单元、在生命周期中引入新的阶段以及特定的参数化来描述其复杂性。本文接着进行了敏感性分析,以确定影响的主要驱动因素并支持设计权衡分析,然后估计最大可信缓解潜力。然后,概述了一种评估可重复使用性可能带来的环境效益的方法,并为所研究的发射服务提供了初步结果。影响评估结果证实,结构和推进剂的生产对阿丽亚娜火箭的生命周期影响最大。由于延长寿命阶段会产生额外影响,因此低级火箭的回收和翻新也发挥着重要作用,但也使一些影响减少成为可能,这些影响可以通过明确的惯例来隔离。跨大西洋运输阶段或测试和加油期间的推进剂消耗会造成不可忽略的影响,这些影响可以通过采用节俭的方法或技术创新来减轻。总体而言,该研究强调,与基线相比,对气候变化和资源枯竭的总影响可能减少约 30-80%。然而,尽管人们普遍认为可重复使用性可以减少生命周期影响,但研究表明,实际情况要复杂得多,因为从发射器的环境性能比较中得出的结论取决于惯例、市场参数、运营方案和环境影响类别。对于所研究的发射服务,结果表明,虽然可重复使用性可能会减少对资源枯竭的影响,但它可能会增加对气候变化的影响。此外,可重复使用性的任何环境效益都可能被这项技术所促进的全球太空活动的增长完全抵消,从而导致适得其反的反弹效应。本研究强调,由于采用生态设计方法,影响可能会减少,这将减轻这种影响。关键词:环境影响、生命周期评估、生态设计、发射器、可重复使用性、方法论 首字母缩略词/缩写
昆虫对杀虫剂的抗性是我们时代最紧迫的问题之一。 对抵抗机制的研究是解决现代生物学的整个基本和实际问题的重要联系。 杀虫产品的长期和密集使用是由不同昆虫种群的耐药性发展引起的。 暴露于杀虫剂会导致氧化应激和昆虫抗氧化剂状态的变化。 目前的综述旨在积累神经毒性杀虫剂研究的结果,以其对昆虫抗氧化剂系统参数的影响。 文献来源是通过利用电子数据库搜索的。 研究和结构化了收集的信息。 该评论的特征是昆虫抗氧化剂系统,通过作用机理对杀虫剂进行了分类,并证明了杀虫剂暴露与氧化应激之间的联系。 结果表明,具有不同活性成分的杀虫剂可能会对不同物种的昆虫的抗氧化剂状态产生重大影响。 在某些情况下,这表明了酶的活动和其他情况下的增加 - 通过减少。 因此,刺激氧化应激和昆虫抗氧化能力的损害是大多数杀虫剂的毒性机制。昆虫对杀虫剂的抗性是我们时代最紧迫的问题之一。对抵抗机制的研究是解决现代生物学的整个基本和实际问题的重要联系。杀虫产品的长期和密集使用是由不同昆虫种群的耐药性发展引起的。暴露于杀虫剂会导致氧化应激和昆虫抗氧化剂状态的变化。目前的综述旨在积累神经毒性杀虫剂研究的结果,以其对昆虫抗氧化剂系统参数的影响。文献来源是通过利用电子数据库搜索的。研究和结构化了收集的信息。该评论的特征是昆虫抗氧化剂系统,通过作用机理对杀虫剂进行了分类,并证明了杀虫剂暴露与氧化应激之间的联系。结果表明,具有不同活性成分的杀虫剂可能会对不同物种的昆虫的抗氧化剂状态产生重大影响。在某些情况下,这表明了酶的活动和其他情况下的增加 - 通过减少。因此,刺激氧化应激和昆虫抗氧化能力的损害是大多数杀虫剂的毒性机制。
摘要 — 在晶圆级上对电力电子器件芯片结构进行精确而准确的电气特性分析对于将器件操作与设计进行比较以及对可靠性问题进行建模至关重要。本文介绍了一种分立封装商用碳化硅 MOSFET 的二维局部电气特性参数分析。在横截面样品上,使用扫描电子显微镜 (SEM) 中的电子束感应电流 (EBIC) 来定位体二极管的 pn 结,评估电子束能量对该区域成像的影响。采用基于原子力显微镜 (AFM) 的扫描电容显微镜 (SCM) 分析封装碳化硅 MOSFET 器件的结区。提出了一种参数方法来揭示 MOSFET 中所有层的局部电气特性(n 型、p 型、掺杂 SiC 外延层的低、中、高掺杂水平以及 SiC 衬底和硅栅极)。本文的目的是揭示 EBIC 和 SCM 对 SiC 封装器件进行全面特性分析的潜力。研究了 SCM 采集期间施加的电压(V DC 和 V AC )的影响,以量化它们对 MOSFET SiC 掺杂层分析的影响。尖端/样品纳米 MOS 接触的 TCAD 模拟支持纳米电气实验,以确认碳化硅芯片 AFM 图的掺杂水平解释。
模型方法:增强收入模型(“模型”)于 2008 年 3 月 1 日开始实施,此后一直持续管理。该模型与实时种子资金一起开始实施。该模型以 1,000,000 美元开始实施,并通过股票交易进行历史管理,包括所有公司行动和分配,这些分配应计并记入现金,就像它们是实时账户一样。模型绩效扣除投资管理费(35 个基点)后显示,还反映了估计交易成本的扣除,这些成本来自历史综合月度绩效与模型绩效之间的差异。分配应计并支付给现金,现金在每次定期模型重新平衡期间进行再投资。模型绩效以时间加权为基础。模型定期重新平衡,作为各自策略的唯一模型目标,按比例反映客户账户内进行的所有相应交易。模型交易由 Parametric 的数据供应商在收盘时定价。模型绩效是通过每日生产流程计算得出的,包括证券价格回报、分配应计/支付和公司行动。自模型成立以来,模型管理理念或持续生产没有发生任何重大变化,模型的实施与投资于策略的客户账户管理高度一致。如有要求,可提供其他模型方法。
此在线数据库包含1954年从1954年前进的温莎大学学生的博士学位论文和硕士学位论文的全文。这些文件仅用于个人研究和研究目的,根据《加拿大版权法》和《创意共享许可》(CCC BY-NC-ND)(归因,非商业,无衍生作品)。根据本许可,必须始终将作品归因于版权持有人(原始作者),不能用于任何商业目的,并且不得更改。任何其他用途都需要获得版权持有人的许可。学生可以询问从该数据库中撤回其论文和/或论文。有关其他查询,请通过电子邮件(scholarship@uwindsor.ca)或电话519-253-3000EXT与存储库管理员联系。3208。