硅量子器件中的自旋是大规模量子计算的有希望的候选对象。基于门的自旋量子比特传感提供了具有高保真度的紧凑且可扩展的读出,但是,需要进一步提高灵敏度以满足保真度阈值和实现纠错协议中的快速反馈所需的测量时间尺度。在这里,我们将 622 MHz 的射频门控传感与在 500 – 800 MHz 频段工作的约瑟夫森参数放大器相结合,以减少读取纳米线晶体管中形成的硅双量子点状态所需的积分时间。根据我们实现的信噪比,我们估计平均保真度为 99.7% 的单重态-三重态单次读出可以在 1 μ s 内完成,远低于容错读出的要求,比不使用约瑟夫森参数放大器快 30 倍。此外,约瑟夫森参数放大器允许在较低的射频功率下运行,同时保持相同的信噪比。我们确定噪声温度为 200 mK,其中约瑟夫森参量放大器(25%)、低温放大器(25%)和谐振器(50%)的贡献,显示出进一步提高读出速度的途径。
摘要:现代可重复使用发射器的发展,例如采用 LOX/LCH4 Prometheus 发动机的 Themis 项目、采用 LOX/LH2 RSR2 发动机的可重复使用 VTVL 发射器第一级演示器的 CALLISTO 以及采用 Merlin 1D 发动机的 SpaceX 猎鹰 9 号,都凸显了对先进控制算法的需求,以确保发动机的可靠运行。这些发动机的多次重启能力对节流阀提出了额外的要求,需要扩展控制器有效性域,以便在各种操作状态下安全地实现低推力水平。这种能力也增加了部件故障的风险,尤其是当发动机参数随着任务概况而变化时。为了解决这个问题,我们的研究使用多物理系统级建模和仿真,特别关注涡轮泵部件,评估了可重复使用火箭发动机 (RRE) 及其子部件在不同故障模式下的动态可靠性。使用 EcosimPro-ESPSS 软件(版本 6.4.34)进行的瞬态条件建模和性能分析表明,涡轮泵组件在标称条件下保持高可靠性,涡轮叶片即使在变化的热负荷和机械负荷下也表现出显著的疲劳寿命。此外,提出的预测模型估计了关键部件的剩余使用寿命,为提高可重复使用火箭发动机中涡轮泵的寿命和可靠性提供了宝贵的见解。本研究采用确定性、热相关结构模拟,关键控制目标包括燃烧室压力和混合比的最终状态跟踪以及操作约束的验证,以 LUMEN 演示发动机和 LE-5B-2 发动机为例。
高维和异质计数数据在各个应用领域收集。在本文中,我们仔细研究了有关Mi-Crobiome的高分辨率测序数据,这些数据使研究人员能够研究整个微生物群落的基因组。揭示这些社区之间的潜在互动对于学习微生物如何影响人类健康至关重要。为了从类似的多元计数数据中进行结构学习,我们开发了一个具有两个关键元素的新型gaussian popula图形模型。首先,我们采用参数回归来表征边际分布。此步骤对于分配外部协变量的影响至关重要。忽略这种调整可能会在推断基础义务网络的推理中引起扭曲。其次,我们基于适合高维度的计算有效搜索算法的贝叶斯结构学习框架。该方法返回边缘效应和降低结构的同时推断,包括图形不确定性估计。一项模拟研究和微生物组数据的真实数据分析突出了所提出的方法从一般的多元计数数据中推断网络的适用性,尤其是对微生物组分析的关系。提出的方法是在R软件包BDGraph中实现的。关键字:Copula图形模型;离散的weibull;链接预测;结构学习;微生物组
Parametric Portfolio Associates ® LLC(“Parametric”)总部位于西雅图,根据 1940 年《投资顾问法》在美国证券交易委员会注册为投资顾问。Parametric 是一家领先的全球资产管理公司,直接向机构投资者提供投资策略和定制化风险管理,并通过金融中介机构间接向个人投资者提供投资策略和定制化风险管理。Parametric 提供各种基于规则的投资策略,包括寻求阿尔法收益的股票、固定收益、另类和期权策略。Parametric 还提供实施服务,包括定制股票、传统覆盖和集中投资组合管理。Parametric 隶属于摩根士丹利投资管理公司(摩根士丹利的资产管理部门),并通过位于西雅图、波士顿、明尼阿波利斯、纽约市和康涅狄格州韦斯特波特的办事处提供这些服务。未经 Parametric 书面同意,不得全部或部分转发或复制本材料。Parametric 及其附属公司对其他方的使用不承担任何责任。
摘要:人口增长,再加上工业和农业发展,导致对淡水供应的需求增加。对于缺水稀缺的国家,淡化构成了解决此问题的唯一可行解决方案。反渗透(RO)技术已被广泛使用,因为膜材料已升级并降低了成本。现在,RO是最重要的技术,用于化下不同类型的水,例如海水,咸水和自来水。但是,它的设计至关重要,因为许多参数都参与获得良好的设计。大量使用RO鼓励建立一种促进设计过程的程序,并有助于获得最佳性能RO脱盐系统。本文提供了一个分为三个部分的过程:(1)对RO参数进行分类; (2)按一定顺序选择pa-armeters,然后通过12个步骤进行计算过程; (3)然后在RO系统分析(ROSA)软件上插入所选参数和获得的值。然后,通过创建一个使用ROSA的RO系统设计阶段遵循的算法图表来总结这些点。然后以拟议列表上的一个示例进行验证以验证该过程,并进行了对参数的不同值进行比较。这项比较研究的结果表明,选择不同的参数会影响RO系统的生产力。此外,每个设计都有特定的最佳参数集,这取决于用户设置的限制。
摘要:紧急能源转换需要在世界能量组合中更好地渗透可再生能源。可再生能源的间歇性需要使用长期存储。目前的系统在衬里的岩石洞穴或空中加压容器中使用水位,作为压缩机的虚拟活塞和扩张器在二氧化碳热泵周期(HPC)中的功能以及有机跨威奇周期(OTC)。在不可渗透的膜中,二氧化碳被压缩和扩展,通过填充和排空泵送的氢水。二氧化碳用两个大气热存储坑交换热量。当需要电力时,当可再生能源可用并被OTC释放时,HPC充电热流体和冰坑。建立了一个数值模型,以复制系统的损失并计算其往返效率(RTE)。随后的参数研究突出了用于大小和优化的关键参数。预期的RTE约为70%,该CO 2 PHE(泵送式电动电力存储)以及PTE(抽水热量储能)可以通过允许间歇性可再生能源的效率存储以及与地区供暖和冷却网络的整合(以及CIES CIES CIES和CITY coity corcient and Cermuty of Future of Fureture of Future of Future of Future of Future of future future。
Charles W. Haines 博士、Panchapakesan Venkataraman 博士、Mark H. Kempski 博士、Chris Nilsen 博士(他不知不觉地引导我走上了贝塞尔曲线的道路)、George Komorowski 先生和 David Hathaway,均为 RTT 机械工程系的教职员工。
摘要 ArianeWorks 是由法国国家空间研究中心和阿丽亚娜集团发起的创新平台,它加速了 Themis 的开发,Themis 是一种由液氧和生物甲烷推动的低成本可重复使用的火箭级演示器,为 2030 年的欧洲发射系列铺平了道路。根据其股东的生态设计愿景,ArianeWorks 在 Themis 计划中启动了生态设计战略的实施。在此背景下,本研究介绍了基于半可重复使用发射器的发射服务的生命周期评估,该发射器源自 Themis 并在圭亚那航天中心运行,该评估发生在 Themis 的早期设计阶段。该分析意味着开发一个特定的框架来解释下级的可重复使用性,需要使用经过调整的功能单元、在生命周期中引入新的阶段以及特定的参数化来描述其复杂性。本文接着进行了敏感性分析,以确定影响的主要驱动因素并支持设计权衡分析,然后估计最大可信缓解潜力。然后,概述了一种评估可重复使用性可能带来的环境效益的方法,并为所研究的发射服务提供了初步结果。影响评估结果证实,结构和推进剂的生产对阿丽亚娜火箭的生命周期影响最大。由于延长寿命阶段会产生额外影响,因此低级火箭的回收和翻新也发挥着重要作用,但也使一些影响减少成为可能,这些影响可以通过明确的惯例来隔离。跨大西洋运输阶段或测试和加油期间的推进剂消耗会造成不可忽略的影响,这些影响可以通过采用节俭的方法或技术创新来减轻。总体而言,该研究强调,与基线相比,对气候变化和资源枯竭的总影响可能减少约 30-80%。然而,尽管人们普遍认为可重复使用性可以减少生命周期影响,但研究表明,实际情况要复杂得多,因为从发射器的环境性能比较中得出的结论取决于惯例、市场参数、运营方案和环境影响类别。对于所研究的发射服务,结果表明,虽然可重复使用性可能会减少对资源枯竭的影响,但它可能会增加对气候变化的影响。此外,可重复使用性的任何环境效益都可能被这项技术所促进的全球太空活动的增长完全抵消,从而导致适得其反的反弹效应。本研究强调,由于采用生态设计方法,影响可能会减少,这将减轻这种影响。关键词:环境影响、生命周期评估、生态设计、发射器、可重复使用性、方法论 首字母缩略词/缩写
摘要:本研究对包含创新技术(固体氧化物电解质电池共电解器和实验性甲烷转化器)并配有可再生发电机的尖端电转气系统进行了完整的热经济性分析。进行的经济分析(从未应用于此类系统)旨在通过现金流分析估算产品的合成天然气成本。对各种工厂配置(具有不同的工作温度和关键部件的压力水平(电解器:600-850 ◦ C;1-8 bar))进行了比较,以确定可能的热协同效应。进行了参数研究,以评估热力学布置和经济边界条件的影响。结果表明,环境压力系统与共电解器和高温甲烷转化器之间的热协同作用的组合具有最佳的经济性能(合成天然气值降低高达 8%)。如果考虑到一些技术经济驱动因素(存储系统和可再生能源发电的适当规模比、电解池成本的发展和碳税的引入),研究中的电转气解决方案所获得的合成天然气的生产成本(比天然气价格低 80%)在天然气市场上将具有竞争力。