摘要在为无行为能力的患者做出替代判断时,代理人经常努力猜测患者有能力会想要什么。代理人也可能因(唯一)做出这种决定的责任而感到痛苦。为了解决此类问题,已经提出了一种患者偏好预测因子(PPP),该预测因素将使用算法从人群级别的数据中推断出单个患者的治疗偏好,以了解具有相似人口统计学特征的人的已知偏好。然而,批评家们已经表明,即使这种PPP平均比人类替代者更准确,在识别患者偏好方面,拟议的算法仍然无法尊重患者(以前的)自主权,因为它会借鉴“错误的”数据:对于个人而言,这些数据不适合个人的数据,因此他们不适合他们的挑战,并且他们的实际原因是他们的实际原因,或者是实际的,或者是实际上的,或者是实际上的,或者是实际的,或者是实际的,或者是实际的,或者是实际上所依据的,或者是实际的原因。在船上受到这样的批评,我们在这里提出了一种新方法:个性化的患者偏好预测因子(P4)。P4基于机器学习的最新进展,该技术允许包括大型语言模型在内的技术更便宜,更有效地“微调”在特定于人的数据上。与PPP不同,P4将能够从实际上特定于其特定的材料(例如先前的治疗决策)中推断出单个患者的偏好。因此,我们认为,除了在个体水平上比以前提出的PPP更准确,P4的谓词还将更直接地反映每个患者自身的原因和价值观。在本文中,我们回顾了人工智能研究中的最新发现,这些发现表明P4在技术上是可行的,并认为,如果它是开发和适当部署的,则应缓解一些基于自主的主要关注原始PPP的批评者的关注。然后,我们考虑对我们的提案的各种异议,并提供一些暂定的答复。
任何疫苗都会引起副作用。大多数情况下,这些副作用都很轻微(例如手臂酸痛或低烧),几天内就会消失。我们鼓励您填写不良反应报告表,报告接种疫苗后出现的任何重大健康问题。
denali Therapeutics正在进行一项持续的DNL310(NCT04251026)的I/II期试验,这是一种旨在治疗猎人综合征的外围和中枢神经系统表现的酶替代疗法。该试验的初始数据证明了DNL310的安全性。DNL310(NCT05371613)的II/III期试验始于2022年,目前正在进行中。在这项试验中,6岁以下的患者被随机分配,以盲目的方式接受DNL310或IDURSULFase(Elaprase)2年。ELAPRASE是FDA批准的酶替代疗法,用于治疗猎人综合征已有15年以上。小脑膜不会穿过血脑屏障,因此不处理猎人综合征的中枢神经系统表现。dnl310是I2融合到Denali专有酶的运输载体,该酶经过精心设计,可通过受体介导的大脑跨脑胞菌病穿越血脑屏障。
文章标题:综述:真菌细胞中的 CRISPR/Cas12 介导的基因组编辑:植物真菌病理学的进展、机制和未来方向 作者:Chiti Agarwal[1] 所属机构:华盛顿州立大学 [1] Orcid ids:0000-0003-4125-2880[1] 联系电子邮件:chiti.agarwal@gmail.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要对原始作品进行适当的引用。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并已提交给 ScienceOpen Preprints 进行开放同行评审。 DOI:10.14293/PR2199.000129.v2 预印本首次在线发布时间:2023 年 6 月 8 日 关键词:CRISPR、CRISPR/Cas12、真菌病原体、植物病原体
在英国,22% 的人口缺乏粮食保障(Butler,2023 年)。该国的收入不平等程度(使用基尼系数)是欧洲最高的国家之一(Francis-Devine 和 Orme,2023 年),过去十年对食物银行的依赖增加了两倍(Trussell Trust,2022 年)。英国日益恶化的粮食不安全状况并非独一无二,因为它反映了其他发达国家受影响最严重的亚群的情况。因此,有人呼吁转变粮食系统,以改善社会环境可持续性。Benton 等人(2022 年)建议制定政策,以抑制粮食浪费,并为弱势家庭提供足够的社会安全网。尽管英国食品供应链(FSC)中的食物浪费水平相对较低,但很少有剩余食物被重新分配供人类食用。然而,剩余食物再分配(SFR)已成为欧洲许多人的主要食物来源。用于人类消费的 SFR 涉及收集和分配剩余食物(原本用于其他目的或被处理掉的可食用食物)给组织、社区或个人消费(Midgley,2020 年)。因此,它被视为一种“双赢”的解决方案,因为它同时解决了食物浪费和粮食不安全问题,同时挽救了食物的能量和营养成分。它还确保了食品生产产生的经济和环境成本不会是毫无意义的。因此,高效的 SFR 有助于实现联合国可持续发展目标 (SDG) 2(零饥饿)、12(负责任的消费和生产,特别是目标 12.3(减少一半的食物浪费))和 13(气候行动)。然而,针对弱势群体优化 SFR 供应链运营的研究有限。
SS-31,也称为Elamipretide,是一种旨在靶向和保护线粒体的合成四肽,这是细胞的能量产生中心。通过与Cardiolipin结合,Cardiolipin是一种位于线粒体内膜上的磷脂,SS-31可减少氧化应激并防止线粒体功能障碍。这使其成为与线粒体损害相关的疾病的潜在治疗选择,例如心血管疾病,神经退行性疾病和与年龄相关的肌肉衰减。
1简介自主控制算法的设计是一项艰巨的任务,因为它传统上需要大量的现实测试,这既耗时又昂贵。仿真是自治设计的宝贵工具,例如,以时间和成本效益的方式协助参数调整,算法测试。此外,在机器学习范围(ML)的范围内,由于其生成训练数据的能力,模拟具有吸引力。在此,我们证明了模拟引擎[1]和自治研究床(ART)[2]平台来促进自治政策制定过程,以避免ML控制政策。这项工作建立了以前的贡献,这些贡献证明了控制策略的各种多速路径的可传递性[3,4]。这项研究证明了通过机器学习(ML)避免障碍物的额外能力。ML已通过收集的数据进行了培训,而人类驾驶员则在模拟器中驱动。
摘要◥目的:大约20%的RAS野生型转移性结直肠癌(MCRC)的患者经历了对抗EGFR抗体西素单抗的客观反应,但很少实现消除疾病。肿瘤收缩的程度与长期结局相关。我们的目的是找到合理组合,通过破坏对抗凋亡分子的适应性依赖性(BCL2,BCL-XL,MCL1)来增强西妥昔单抗的效率。实验设计:实验是在患者衍生的异种移植物(PDX)和类器官(PDXO)中进行的。凋亡的底漆。促凋亡和抗凋亡蛋白复合物。通过caspase激活PDXOS和监测PDX生长来评估组合疗法的影响。结果:由314个PDX队列中的人口试验,由许多患者确定,确定46个模型(14.6%),具有明显的
癫痫发作类型识别对于癫痫患者的治疗和管理至关重要。然而,这是一个耗时耗力的困难过程。随着机器学习算法的进步,自动诊断系统有可能加速分类过程、提醒患者并支持医生做出快速准确的决策。在本文中,我们提出了一种新型多路径癫痫发作类型分类深度学习网络 (MP-SeizNet),它由卷积神经网络 (CNN) 和具有注意机制的双向长短期记忆神经网络 (Bi-LSTM) 组成。本研究的目的是仅使用脑电图 (EEG) 数据对特定类型的癫痫发作进行分类,包括复杂部分性、简单部分性、失神性、强直性和强直阵挛性癫痫发作。EEG 数据以两种不同的表示形式输入到我们提出的模型中。 CNN 接收从 EEG 信号中提取的小波特征,而 Bi-LSTM 接收原始 EEG 信号,以便我们的 MP-SeizNet 能够从癫痫发作数据的不同表示中进行联合学习,从而获得更准确的信息学习。我们利用最大的 EEG 癫痫数据库——天普大学医院 EEG 癫痫发作语料库 TUSZ v1.5.2 评估了所提出的 MP-SeizNet。我们使用三重交叉验证对不同患者数据评估了我们提出的模型,并使用五重交叉验证对癫痫发作数据评估了模型,结果分别获得了 87.6% 和 98.1% 的 F1 分数。
根据上述列表,合格的候选人应在规定的日期和时间上报告访谈,以及他们已经通过电子邮件/注册帖子向他们发送给他们的采访信中提到的原始文件。