CRISPR-Cas9、-Cas12a、-Cas12b 和 -Cas13 已被用于人类和植物细胞的基因组工程(Liu et al., 2022)。然而,这些 Cas 蛋白的尺寸较大(例如 SpCas9 为 190 kDa),难以通过病毒载体递送到细胞中。开发更小的 Cas 蛋白将导致病毒载体尺寸减小,从而可以在多功能基因组工程系统中更广泛地采用。最近,在巨型噬菌体中发现了 CRISPR-Cas12j2 (Cas F) 系统,由于 Cas12j2 的尺寸较小(80 kDa),该系统发展成为超紧凑基因组编辑器(Pausch et al., 2020)。不幸的是,使用核糖核蛋白传递的拟南芥原生质体中 Cas12j2 的基因编辑效率不到百分之一(Pausch 等人,2020 年)。如果植物科学界要采用 CRISPR-Cas12j2 介导的植物基因组编辑,显然需要进一步优化该系统。
- Caupp, Max Kehry, Marjaja Krstić, Fabian Mack, Sourav Ma- jumdar, Brian D. Nguyen, Shane M. Parker, Fabian Pauly, Ansgar Pausch, Eva Perlt, Gablel S. Phun, Ahmadreza Rajaby, Demittry Raappopoposed, Beblocked Samber, Tim Stra- Tapavicza, Robert S. Treß, Vamsee Voora,ArtureWordyński,Jason M. You,Benedic Zerulla,Philip Furche,ChrisofHätig,Marke Serca,David P. Tew和Florian Weigend。 “ Turbomole:Thy ISSN 1549-9626。这样做:10.1021/acs.jcc.3c00347。 url:http://dx.doi.org/10.1021/acs.jc.3c00347“ Turbomole:ThyISSN 1549-9626。这样做:10.1021/acs.jcc.3c00347。 url:http://dx.doi.org/10.1021/acs.jc.3c00347url:http://dx.doi.org/10.1021/acs.jc.3c00347
生物后五角烷的代谢30名官员Sarah Stadt 1 1,Nicolka 2的出版商,Markus Perl 3,Julia Franz 1,Julia Franz 1,Linda Warmuth 8,A。Fante 3,Aist 3,AistScorupcaitėScorupcaitė9 1,12 1,16,帕特里克(Patrick Your 1)
本杰明·A·阿德勒 1、2、†、马雷娜·I·特立尼达 1、3、†、丹尼尔·贝利尼-拉贝洛 1、2、伊莱恩·张 1、3、汉娜·M·卡普 1、4、彼得·斯科平采夫 1、2 Br i W。 Thor Nton 1,5,Rachel F. Weissman 1,5,Peter H. Yoon 1,5,Linxing Chen 1,6,Tomas Hessler 1,6,6,7,8,Amy R. Eggers 1,5,David Colognori 1,5,Ron Boger,Ron Boger,Ron Boger,Erty,Erty,Erty,Erty,1,2,Connor A. Tsuchida 1,2。 3,Kevin M. Wasko 1,5,Zehan Zhou 1,5,Chenglong Xia 1,2,Muntung,Jhary,J.R。和R. Pat El 1,Vienna CJX Thomas 1,4,Rithu Pattali 1,5 Do 1,Ramit R. Ramit,Ramit,Roland W. Calver T 13,Rebecca s。 Bamer t 13、Ga vin J. Knot t 13、Audrone Lapinaite 14、15、16、Patrick Pausch 17、Joshua C. Cofsky 18、Erik J. Sontheimer 19、20、21、Blake Wieden、Peter C. Fineran 24、24、23.、26、Stan J.J. Brouns 27 , 28 , Dipali G. Sashital 29 , Brian C. Thomas 30 , Christopher T. Brown 30 , Daniela SA Goltsman 30 , Rodolphe Barrang ou 1 , 31 , Virginius Siksnys 32 , Jillian F. Banfield 1 , 7 , David F , 33 . 1 , 3 , 5 和 Jennifer A. Doudna 1 , 2 , 3 , 4 , 5 , 34 , 35 , *
Caspedia数据库:2类CRISPR-CAS酶的功能分类系统Benjamin A. Adler 1,2†,Marena I. Trinidad 1,3†,Daniel Belieny-Relo 1,2,Elaine 1,Elaine 1,Elaine 1, 1,2,Brittney W. Thornton 1,5,Rachel F. Weissman 1,5,Peter H. Yoon 1,5,Lixing Chen 1,6,Tomas Hessler 1,6-8,Amy R.Eggers 1,5,Ron Boger Doherrty 1,2,Connor A. Tsuchida 1,9,Ryan V. Tran 4,Laura Hofman 1,2,10,Honglue Shi 1,3,Kevin M. Wasko 1,5,Zehan Zhou 1,5帕特尔1,维也纳C.J.X.Thomas 1,4,Rithu Pattali 1,5,Matthew J. Kan 1,11,Anna Vdapetyan 1,Pag Yang 1,5,Arushi Lahiri 5,Michael Maxwell 12,Andrew G. Murdock 12 Roland W. Calvert 13,Rebecca S. Bamert 13,Gavin J. Knott 13,Audrone Lapinatite 14-16,Pausch 17,Joshua C. Cofsky 18,Erik J 23-26,Stan J.J. Brouns 27-28,Dipali G. Sashhital 29,Brian C. Thomas 30,Christopher T. Brown 30,Daniela S. A. Goltsman 30,Rodolphe Barrangou F. Savage 1,3,5,Jennifer A. Doudna 1-5,34-35 * 1 Innovative gentites Institute,加利福尼亚大学,加利福尼亚州伯克利分校,加利福尼亚州94720,美国。2加州定量生物科学机构(QB3),加利福尼亚大学,加利福尼亚州伯克利分校,美国94720,美国。 3美国加利福尼亚州伯克利分校,加利福尼亚大学,美国94720,美国。 4,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,美国94720,美国化学系。2加州定量生物科学机构(QB3),加利福尼亚大学,加利福尼亚州伯克利分校,美国94720,美国。3美国加利福尼亚州伯克利分校,加利福尼亚大学,美国94720,美国。4,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,美国94720,美国化学系。4,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,美国94720,美国化学系。5分子与细胞生物学系,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,美国94720,美国。5分子与细胞生物学系,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,美国94720,美国。
成簇的规律间隔的短回文重复序列-CRISPR相关(CRISPR-Cas)系统作为细菌和古菌中一种重要的RNA引导的适应性免疫系统,其功能是防御病毒、质粒和转座子等移动遗传元件(MGEs)的侵害(Sorek et al., 2013; Faure et al., 2019; Koonin and Makarova, 2019; Makarova et al., 2019)。CRISPR位点由Cas基因和CRISPR阵列组成。CRISPR-Cas系统的功能主要分为三个阶段。第一阶段是适应阶段,Cas蛋白如Cas1和Cas2将外来的原型间隔序列插入到CRISPR阵列中,使其成为新的间隔物。第二阶段为表达阶段,CRISPR阵列转录为前CRISPR RNA(crRNA),随后加工为成熟的crRNA。最后是干扰阶段,crRNA引导CRISPR效应蛋白裂解病毒、质粒等外来靶序列(Barrangou et al., 2007; Brouns et al., 2008)。此前人们认为CRISPR系统仅存在于细菌和古菌中,但最近在巨型噬菌体中发现,CRISPR系统缺少适应阶段所需的Cas蛋白,如Cas1、Cas2和Cas4,而相应的效应蛋白也具备基因编辑能力(Al-Shayeb et al., 2020; Pausch et al., 2020)。这些CRISPR-Cas系统可能靶向宿主基因组,调控宿主基因表达,增强噬菌体的生存力(Al-Shayeb et al.,2020)。CRISPR-Cas系统与MGEs竞争,促进了CRISPR-Cas系统的进化,大大增加了其多样性(Koonin and Makarova,2019)。目前的CRISPR-Cas系统根据效应模块分为1类和2类(Makarova et al.,2015)。1类系统具有由多个Cas蛋白组成的效应模块,包括3种类型和16种亚型,而2类系统包含一个大蛋白,包括3种类型和17种亚型(Makarova et al.,2019)。在过去的十年中,CRISPR-Cas系统已经发展成为多种编辑工具。由于1类成员的复杂性,目前开发的基因编辑工具较少(Özcan等人,2021;Dolan等人,2019;Cameron等人,2019)。目前,2类成员正在被开发成大量的基因编辑工具。2类系统分为三类,包括II型、V型和
202. 3) Wang, JY, Tuck, OT, Skopintsev, P., Soczek, KM, Li, G., Al-Shayeb, B., Zhou, J., & Doudna, JA (2023) 通过 CRISPR 修剪器整合酶进行基因组扩展。Nature,618,855 ‒ 861。4) Wang, JY, Pausch, P., & Doudna, JA (2022) CRISPR-Cas 免疫和基因组编辑酶的结构生物学。Nat. Rev. Microbiol. , 20 , 641 ‒ 656。5) Anzalone, AV、Randolph, PB、Davis, JR、Sousa, AA、Ko-blan, LW、Levy, JM、Chen, PJ、Wilson, C.、Newby, GA、Raguram, A. 等人 (2019) 无需双链断裂或供体 DNA 的搜索和替换基因组编辑。Nature,576,149 ‒ 157。6) Mehta, J. (2021) CRISPR-Cas9 基因编辑用于治疗镰状细胞病和β地中海贫血。N. Engl. J. Med.,384,e91。 7) Kapitonov, VV, Makarova, KS, & Koonin, EV (2015) ISC,一组编码 Cas9 同源物的新型细菌和古细菌 DNA 转座子。J. Bacteriol. ,198,797 ‒ 807。8) Altae-Tran, H., Kannan, S., Demircioglu, FE, Oshiro, R., Nety, SP, McKay, LJ, Dlakić, M., Inskeep, WP, Makarova, KS, Macrae, RK, et al. (2021) 广泛分布的 IS200/IS605 转座子家族编码多种可编程的 RNA 引导的核酸内切酶。 Science , 374 , 57 œ 65。9) Weinberg, Z., Perreault, J., Meyer, MM, & Breaker, RR (2009) 细菌宏基因组分析揭示的特殊结构化非编码 RNA。Nature , 462 , 656 œ 659。10) Hirano, S., Kappel, K., Altae-Tran, H., Faure, G., Wilkinson, ME, Kannan, S., Demircioglu, FE, Yan, R., Shiozaki, M., Yu, Z., et al. (2022) OMEGA 切口酶 IsrB 与 ω RNA 和靶 DNA 复合的结构。 Nature , 610 , 575 œ 581。11) Biou, V., Shu, F., 和 Ramakrishnan, V. (1995) X 射线晶体学显示翻译起始因子 IF3 由两个通过 α 螺旋连接的紧凑的 α/β 结构域组成。EMBO J. , 14 , 4056 œ 4064。12) Schuler, G., Hu, C., 和 Ke, A. (2022) IscB-ω RNA 进行 RNA 引导的 DNA 切割的结构基础以及与 Cas9 的机制比较。 Science,376,1476 ‒ 1481。13) Bravo, JPK、Liu, MS、Hibshman, GN、Dangerfield, TL、Jung, K.、McCool, RS、Johnson, KA 和 Taylor, DW (2022) CRISPR-Cas9 错配监测的结构基础。Nature,603,343 ‒ 347。14) Aliaga Goltsman, DS、Alexander, LM、Lin, JL、Fregoso Ocampo, R.、Freeman, B.、Lamothe, RC、Perez Rivas, A.、Temoche-Diaz, MM、Chadha, S.、Nordenfelt, N. 等人 (2022) 从未培养的微生物中发现用于基因组编辑的紧凑型 Cas9d 和 HEARO 酶。Nat. Commun. ,13,7602。