Westfield 废水处理厂:泵送系统优化 - 重建 4 台进水泵。5 个月即可收回成本,使电动泵送用量减少 24%,同时使整体泵送效率提高 13.2%。
收到日期:2022 年 6 月 4 日 修订日期:2022 年 8 月 11 日 接受日期:2022 年 8 月 18 日 摘要——电池储能系统 (BESS) 被认为是最发达的储能系统 (ESS) 技术之一,因为它们对配电网具有不同的好处,例如平滑输出波动、改善电能质量、峰值负荷转移、电压支持和延迟配电网升级。这项工作涉及将 BESS 集成到约旦的 33 KV 配电网中。CYME 软件用于评估 Almanara 光伏电站的 BESS 对 33 KV 中压网络的影响。选择电压水平、功率损耗、功率因数 (PF) 和电压阶跃作为性能指标。对于这些指标中的每一个,都对有和没有 BESS 的电网性能进行了比较。此外,还计算了 BESS 的回收期。结果表明,BESS 不仅提高了电压水平(两个馈线的总体改善率约为 3.03%),而且还降低了损耗,两个馈线的总体损耗降低了 4.68%。发现 BESS 降低了两个馈线的 PF,平均为 0.83,而电压阶跃不超过国际电工委员会 (IEC) 规定的限值。此外,进行的经济分析表明,回收期约为 10.98 年。关键词——电池储能系统;储能系统;技术经济分析;发电厂;回收期。
图 1 太阳能加热器系统 ................................................................................................................ 9 图 2 太阳能加热器的主要方面 ...................................................................................................... 11 图 3 不同集热器的比较 ........................................................................................................ 15 图 4 不同集热器类型的集热器数据 ........................................................................................ 16 图 5 平板集热器 ...................................................................................................................... 21 图 6 集热器效率与温差 ...................................................................................................... 21 图 7 隔热材料的特性 ................................................................................................................ 22 图 8 框架设计 ............................................................................................................................. 23 图 9 太阳能热水器 ................................................................................................................ 23 图 10 太阳能热水器设计 ................................................................................................................ 24 图 11 框架尺寸 ............................................................................................................................. 24 图 12 整个系统(参考文献:10) ................................................................................................ 25 图 13 集热器设计(参考文献:10) ................................................................................................ 25 图14 现金流量图 ................................................................................................................................ 26 图 15 投资回收期 .............................................................................................................................. 27 图 16 投资回收期图 .............................................................................................................................. 27 图 17 太阳能热水器组装模型 ............................................................................................................. 28 图 18 项目计划 ............................................................................................................................. 29
广泛部署光伏电池的一个有希望的途径是利用廉价、高效的串联电池。我们以最先进的商用硅电池为基准,对钙钛矿-硅和钙钛矿-钙钛矿串联电池的能量回收期、碳足迹和环境影响评分进行了整体生命周期评估。考虑了串联电池制造和操作过程中处理步骤和材料的可扩展性。全钙钛矿串联配置的能量回收期和温室气体排放因子分别为 0.35 年和 10.7 g CO 2 -eq/kWh,而硅基准分别为 1.52 年和 24.6 g CO 2 -eq/kWh。延长使用寿命为减少碳足迹提供了强大的技术杠杆,使得钙钛矿-硅串联电池可以在能源和环境性能方面超越目前的基准。具有灵活和轻质外形的钙钛矿-钙钛矿串联材料进一步提高了约 6% 的能源和环境性能,从而增强了大规模、可持续部署的潜力。
•包括智商电池5P在内的解决方案考虑了15年后替换智商电池•EV充电器和热泵的整合将减少1到2年的回报时间•所有计算都使用Enphase的设计和提案软件
有兴趣获得网络安全和其他网络相关学科全额奖学金的四年级本科生、研究生/博士生。入选该项目的学生将获得全额奖学金。这要求学生同意在毕业后为国防部服务一年,以换取每年或部分一年的奖学金,此外还要完成下面列出的实习。也可以通过服兵役来偿还奖学金。选择入伍或接受委任在某一个军事部门服现役的个人,毕业后应在该部门服现役至少 4 年。军事部门可能会建立超过 4 年的服役义务,具体取决于所选的职业专业和入伍或委任计划类型。传统国民警卫队和预备役士兵有资格申请。该群体的奖学金回报为每获得一年奖学金可获得两年的服务回报。
这项研究评估了沿Cipali,Semarang-Solo和Surabaya-Mojokerto Highways的电动汽车(EV)充电站的光伏(PV)和风力涡轮机的计划和开发。随着能源需求的增长和可持续性的越来越多,纳入可再生能源对于减少对化石燃料的依赖至关重要。通过使用Homer Pro软件,该研究分析了这种混合方法的运营绩效和经济实用性,强调了关键指标,例如内部收益率(IRR),投资回报率(ROI)和投资回收期。调查结果表明,PV-WIND混合系统减少了能源费用,并提高了电动汽车充电基础设施的效率和可持续性。值得注意的是,萨拉巴亚-Mojokerto网站展示了最有利的结果,其IRR的特征超过25%,而且回报期为四年。这些结果强调了有效管理,战略规划和可再生能源系统可持续发展的关键作用,以加强印度尼西亚具有环境意识的运输基础设施。
摘要 —本文提出了一个技术经济优化模型,用于分析光伏电池 (PVB) 系统对瑞士不同客户群的经济可行性,这些客户群根据其年用电量、屋顶大小、年辐照量和位置进行聚类。对 2020 年至 2050 年的静态投资模型进行模拟,并进行全面的敏感性分析以调查成本、负荷曲线、电价和关税等各个参数的影响。结果表明,虽然对于当今的一些客户群来说,将光伏 (PV) 与电池结合起来已经比单独使用光伏产生了更好的净现值,但由于政策变化、成本和电价发展的混合影响,投资回收期在 2020 年至 2035 年之间波动。最佳光伏和电池尺寸会随着时间的推移而增加,到 2050 年,光伏投资主要受屋顶大小的限制。 PVB 系统投资的经济可行性因客户群而异,最具吸引力的投资(即具有最短回报期的投资)大多适用于年辐射量和电力需求较高的客户群。此外,投资决策对回报期、未来成本、电价和关税发展高度敏感。最后,通过分析瑞士剩余系统负载曲线,研究了 PVB 系统部署对电网的影响。太阳能发电的季节性、每日和每小时模式引起的剩余负载曲线的动态强调了对具有快速提升能力的灵活资源的需求。索引术语 — 电池存储、电价、优化、自用、太阳能光伏、技术经济模型