摘要:在这项工作中,使用溶液制备方法制备了聚苯胺(PANI)(PANI)(PANI)和铅硫纳米颗粒(PBSNP)的纳米复合样品,以植入储能元件中。PANI/PBS纤维被不同的氧束的不同流体辐射:5×10 16、10×10 16和15×10 16离子。CM -2。由XRD,SEM,DSC和FTIR研究了复合材料。离子辐照后,T G和T M值分别降低了4.8℃和10.1℃。 以10 2 Hz至5 MHz的频率检查了未处理和受照射样品的电导率,电阻抗和电气模量。 此外,离子束在PANI/PBS的介电特性中引起了修改。 介电常数ε'从31提高到611,并通过通过将流量提高到15×10 16离子。CM -2。 此外,势能屏障W M从0.43 eV降低到0.23 eV。 确定了PANI/PBS样品的介电性能和结构特性的诱导变化。 这些修改提供了一个机会,可以将使用辐照的PANI/PBS样品用于多种应用,包括微电子,电池和电能的存储。离子辐照后,T G和T M值分别降低了4.8℃和10.1℃。以10 2 Hz至5 MHz的频率检查了未处理和受照射样品的电导率,电阻抗和电气模量。此外,离子束在PANI/PBS的介电特性中引起了修改。介电常数ε'从31提高到611,并通过通过将流量提高到15×10 16离子。CM -2。此外,势能屏障W M从0.43 eV降低到0.23 eV。确定了PANI/PBS样品的介电性能和结构特性的诱导变化。这些修改提供了一个机会,可以将使用辐照的PANI/PBS样品用于多种应用,包括微电子,电池和电能的存储。
摘要:本文研究了Ba离子改性的典型氧化物单轴铁电单晶Pb5Ge3O11的一些铁电性质,包括介电常数、DSC、铁电极化和电热效应(ECE)测量。测量结果表明,增加Ba掺杂会显著影响所有测量参数,主要是通过降低居里温度、逐渐扩散相变、降低极化值以及矫顽场来影响。整体ECE的下降受到极化降低的影响。与纯PGO单晶相比,这一降幅从1.2K降至0.2K。然而,扩散相变的影响增加了其发生范围(高达30K),这可能对应用有益。
摘要:本文研究了Ba离子改性的典型氧化物单轴铁电单晶Pb5Ge3O11的一些铁电性质,包括介电常数、DSC、铁电极化和电热效应(ECE)测量。测量结果表明,增加Ba掺杂会显著影响所有测量参数,主要是通过降低居里温度、逐渐扩散相变、降低极化值以及矫顽场来影响。整体ECE的下降受到极化降低的影响。与纯PGO单晶相比,这一降幅从1.2K降至0.2K。然而,扩散相变的影响增加了其发生范围(高达30K),这可能对应用有益。
在人工智能(AI)和物联网(IoT)时代,包括图像,声音,气味和伤害在内的大量感官数据是从外部环境中感知的,对以数据为中心任务的处理速度和能源效率施加了关键要求。1 - 3,尽管已经做出了巨大的努力来提高von Neumann计算机的计算能力和效率,但物理分离的处理和内存单元之间的恒定数据不可避免地会消耗巨大的能量并诱导计算潜伏期。4 - 9另外,基于人工神经网络(ANN)的人脑启发的神经形态计算已经证明了其在AI和机器学习等数据密集应用中的巨大优势。必须开发ANN的硬件实施,即人工突触和神经元,以模仿生物突触和神经元的生理活性。近年来,已经提出了各种神经形态设备,10 - 13,由于其简单的结构,高积分密度,高运行速度,低能量消耗和模拟行为,两个末端的内置构件被认为是最有希望的候选者。1,2,7,8,14 - 17尤其是,最近具有挥发性阈值转换(TS)行为的新型扩散的回忆录已证明它们在泄漏的整合和火灾(LIF)神经元中的潜力,5,7,18,19,19
骨肉瘤患者在初次诊断时即出现明显转移,其 5 年生存率不足 20%。TP-3 是一种鼠类 IgG2b 单克隆抗体,对骨肉瘤细胞表面膜抗原 p80 上的表位具有高亲和力。肿瘤相关抗原 p80 在骨肉瘤中过度表达,在正常组织中的表达非常低。我们提出了一种新型双阿尔法靶向溶液,该溶液包含来自同一衰变链的两种放射性核素,包括骨趋向性 224 Ra 和癌细胞表面趋向性 212 Pb-TCMC-TP-3,用于治疗成骨性骨癌、循环癌细胞和微转移。在这项体外研究中,研究了 212 Pb-TCMC-TP-3(单 α 溶液)和 224 Ra/212 Pb-TCMC-TP-3(双 α 溶液)在模拟骨肉瘤微转移性疾病的多细胞球体模型中的细胞毒性作用。直径为 253 ± 98 µ m 的 OHS 球体分别用 4.5、2.7 和 3.3 kBq/ml 的 212 Pb-TCMC-TP-3 处理 1、4 和 24 小时,在 3 周内崩解。212 Pb-TCMC-TP-3 诱导的球体倍增时间延迟了 7 倍,而非特异性 212 Pb-TCMC-利妥昔单抗的剂量则高出 28 倍。 224 Ra/ 212 Pb-TCMC-TP-3 分别在 5 kBq/ml 孵育 4 小时和 24 小时后,在 3 周和 2 周内完全分解了直径为 218–476 µ m 的球体。与未结合的 224 Ra/ 212 Pb 相比,用 1 kBq/ml 224 Ra/ 212 Pb-TCMC-TP-3 处理 24 小时可导致球体活力降低 11.4 倍。
强度有助于确定与相动力学(n、k 和活化能 E a )和伴随生长相关的各种参数。钙钛矿的有效活化能
激发和运输能力。[1 - 5]在短短几年内,它的功率转化效率(PCE)超过25.7%,对硅PVS构成范围。[6 - 9]尽管基于PB的PSC对大规模生产表现出非凡的希望,但[10-12]由于潜在的毒性和在其一生中浸出有害PB物种的潜在毒性和浸出,因此对它们的环境影响有所越来越多。胶体量子点(QD)是下一代PV应用程序的另一个有前途的候选人,由于其独特的尺寸依赖性量子构件具有出色的光学和电子正确性,因此受到了极大的关注。[13 - 15] Pb chalcogen- QD(例如PBS,PBSE)是PVS中最有希望的纳米颗粒(NP)材料之一,在PBS QDSC中,PVS的认证PCE高达13.8%。[16,17]低成本且可扩展的基于溶液的处理方法可以提供QD范围广泛的带镜,并且通常比有机发色团更好。尽管QDSC的PCE不断增加,但设备稳定性仍然是工业应用的重要挑战。除了PV之外,QD还进一步揭示了其在生物医学成像,显示和电子行业中的有希望的应用。与基于PB的PSC类似,越来越多的问题也引起了其潜在的Pb2Þ的毒性,
低温联合陶瓷LTCC是一个建立的材料平台,用于制造高质量,高性能和高可靠性电子设备;但是,传统上使用了足够宽的加工窗口的系统,具有含PB的眼镜。Micromax™Greentape™LF95C已被引入为无PB的LTCC系统,具有许多有吸引力的物理,热和电子性能,包括可重复的收缩,10 GHz时<0.005的介电介电损失,refire稳定性以及全基因金属化系统。陶瓷通过玻璃粘性流量致密,该流程提供了在宽过程窗口上共弹的能力。高导电性AG金属化,低DF和可重复的收缩和DK使LF95C成为生产高可稳定性电子设备的出色材料平台,同时促进可持续性目标并致力于满足覆盖范围和ROHS计划的精神。关键字陶瓷胶带,陶瓷电路,陶瓷电子设备,无铅,LF95C,低温联合陶瓷,LTCC,无PB,无PB,厚膜。
其高吸收系数使其在半透明太阳能电池应用方面具有吸引力。 [6] 然而,这些材料的高吸收系数使其难以在低带隙钙钛矿(≈带隙<1.7 eV)PSC 中获得高平均可见光透射率 (AVT) 值。虽然降低钙钛矿层厚度是增强任何半透明 PSC (ST-PSC) 中 AVT 的明显解决方案,但是,由于与使用溶液工艺制造亚 100 纳米、均匀、无针孔的钙钛矿薄膜相关的限制,该解决方案尚未可靠地实施。 [7] 因此,限制了 ST-PSC 可实现的最大 AVT。为了解决这个问题,据报道,替代性的钙钛矿层沉积和生长策略可以在不需要显著减少膜厚度的情况下提高钙钛矿层的透射率。[7] 例如,最初引入了脱湿和网格辅助沉积技术,使钙钛矿薄膜部分覆盖在基底上。脱湿技术导致随机生长的钙钛矿岛的形成,[8,9] 而网格辅助沉积导致钙钛矿在受控的网格结构中生长。[10,11] 虽然这两种方法显著提高了钙钛矿层的透射率,但由于在无钙钛矿区域空穴传输层和电子传输层直接接触导致分流通路的存在,相应的器件表现出有限的 PCE。[12] 需要在没有钙钛矿的区域额外选择性沉积绝缘分子,以减少上述泄漏损失。 [12,13] 随后,引入支架层和材料以生长有序的大孔 [14] 微结构 [15,16] 和纳米结构 [17] 钙钛矿层。虽然这些钙钛矿结构表现出增强的透射率和减少的分流通路,从而提高了 ST-PSC 的 AVT 和 PCE,但它们的制造相对复杂和繁琐得多,即与厚的不透明钙钛矿薄膜的溶液处理相比,它们需要额外的材料和合成工艺。此外,在大多数情况下,上述 ST-PSC 的开路电压 (V oc) 和填充因子 (FF) 分别低于 ≈ 1000 mV 和 ≈ 70%,这表明与不透明的对应物相比,这些器件中存在残余复合损失。因此,需要一种简单的替代方法来生长足够透明和致密的钙钛矿层
摘要:紫外光电探测器(UVPD)在军事和民用应用中发挥着重要作用,通常采用宽带隙半导体(WBS)作为构造模块来制造。遗憾的是,基于 WBS 的 UVPD 商业化往往受到其相对较高的制造成本的限制,因为需要使用非常复杂的生长仪器。在本文中,我们提出了一种基于具有相对较小带隙的非 WBS 硫化铅(PbS)的灵敏 UVPD。器件分析表明,由 48.5 nm PbS 纳米薄膜制成的 UVPD 对 365 nm 的紫外线照射高度敏感。具体而言,在 365 nm 照射下的响应度和特定探测率分别为 22.25 AW − 1 和 4.97 × 10 12 Jones,与大多数传统的基于 WBS 的 UVPD 相当或更好。基于 PbS 纳米薄膜的 UVPD 还表现出优异的环境稳定性。实验结果和基于技术计算机辅助设计软件的模拟证实,PbS 纳米薄膜的异常特性与相对较薄的厚度和波长相关的吸收系数有关。这些结果为窄带隙半导体在未来光电设备和系统中实现低成本敏感 UVPD 提供了机会。关键词:紫外光电探测器、窄带隙半导体、PbS、高响应度、技术计算机辅助设计 ■ 介绍
