推荐引用 推荐引用 Gupta, Rajat,“基于模式的系统工程 (PBSE) - 产品生命周期管理 (PLM) 集成和验证”(2017)。开放获取论文。1282。https://docs.lib.purdue.edu/open_access_theses/1282
摘要 - 使用BRUS方程研究了限制方程中PBSE,PBS和PBTE半导体的光学性质。结果表明QD表现出尺寸依赖性的光学行为,因此,由于量子限制,QDS表现出可调的带隙和发射波长。随着QD尺寸的减小,所有三种材料的吸收边缘和发射峰均为蓝色。发现PBSE QD即使在较大尺寸的情况下也会显示出明显的量子限制。由于其相对较大的激子BOHR半径(〜46 nm),随着尺寸从10 nm降低到2 nm,频带gap从0.27 eV增加到1 eV,将吸收和排放转移到近红外(NIR)中,导致应用于NIR PhotodeTectors,太阳能电池,太阳能电池,太阳能电池,杂音,并将其应用于。此外,与PBSE相比,PBS QDS在较小的激子BOHR半径(〜20 nm)上显示出较小的量子限制效应。随着尺寸从10 nm降低到2 nm,带隙从0.41 eV增加到1.5 eV,将吸收和发射从NIR转移到可见范围。这是在太阳能电池中使用的,NIR光电探测器和LED可见。此外,PBTE QD还显示出明显的量子限制效应,因为它们相对较大的激子BOHR半径(〜46 nm)。随着尺寸从10 nm降低到2 nm,带隙从0.32 eV增加到约1 eV,将吸收和发射转移到NIR和中红外(miR)区域,使其成为红外探测器,热电和miR应用的出色材料。在研究的半导体材料中,PBS QD通常显示出带隙的最大增加,尺寸降低,使其适合需要更大的带隙可调性的应用,其次是PBSE和PBTE。这些不同的光学特性是由于其独特的电子特性和激子BOHR半径所致。
考虑到大型材料空间,热电材料的探索挑战,再加上掺杂和合成途径的多样性所带来的自由度的增加。在这里,已合并历史数据,并通过使用错误纠正学习(ECL)进行实验反馈进行更新。这是通过从先验数据集中学习而实现的,然后将模型调整为合成和表征的差异,这些差异很难参数化。This strategy is thus applied to discovering thermoelectric materials, where synthesis is prioritized at temperatures < 300 ○ C. A previously unexplored chemical family of thermoelectric materials, PbSe:SnSb, is documented, finding that the best candidate in this chemical family, 2 wt% SnSb doped PbSe, exhibits a power factor more than 2 × that of PbSe.本文的研究表明,与由最先进的机器学习(ML)模型提供动力的高通量搜索相比,闭环实验策略减少了所需的实验数量,以将优化材料数量高达3×。还可以观察到,这种改进取决于ML模型的准确性,以表现出减少回报的方式:一旦达到了一定的精度,与实验途径相关的因素开始主导趋势。
考虑到大型材料空间,热电材料的探索挑战,再加上掺杂和合成途径的多样性所带来的自由度的增加。在这里,已合并历史数据,并通过使用错误纠正学习(ECL)进行实验反馈进行更新。这是通过从先验数据集中学习而实现的,然后将模型调整为合成和表征的差异,这些差异很难参数化。This strategy is thus applied to discovering thermoelectric materials, where synthesis is prioritized at temperatures < 300 ○ C. A previously unexplored chemical family of thermoelectric materials, PbSe:SnSb, is documented, finding that the best candidate in this chemical family, 2 wt% SnSb doped PbSe, exhibits a power factor more than 2 × that of PbSe.本文的研究表明,与由最先进的机器学习(ML)模型提供动力的高通量搜索相比,闭环实验策略减少了所需的实验数量,以将优化材料数量高达3×。还可以观察到,这种改进取决于ML模型的准确性,以表现出减少回报的方式:一旦达到了一定的精度,与实验途径相关的因素开始主导趋势。
开发具有窄槽的精确硒化铅 (PbSe) 光栅对于光谱、热成像和环境传感中使用的中红外 (MIR) 技术的发展至关重要。制造这些组件的主要障碍是,随着槽宽变小,蚀刻轮廓中的不规则性和反应离子蚀刻 (RIE) 延迟趋势会增加。本演讲指出,非导电光刻胶上电荷的积累是这些不规则性的主要来源。通过应用导电铜层,我们可以中和这种电荷,从而成功蚀刻轮廓显著增强且槽宽低至 0.7 μm 的光栅。这一突破不仅提高了 MIR 设备的灵敏度和分辨率,还为安全和医疗保健等领域的新应用铺平了道路。
激发和运输能力。[1 - 5]在短短几年内,它的功率转化效率(PCE)超过25.7%,对硅PVS构成范围。[6 - 9]尽管基于PB的PSC对大规模生产表现出非凡的希望,但[10-12]由于潜在的毒性和在其一生中浸出有害PB物种的潜在毒性和浸出,因此对它们的环境影响有所越来越多。胶体量子点(QD)是下一代PV应用程序的另一个有前途的候选人,由于其独特的尺寸依赖性量子构件具有出色的光学和电子正确性,因此受到了极大的关注。[13 - 15] Pb chalcogen- QD(例如PBS,PBSE)是PVS中最有希望的纳米颗粒(NP)材料之一,在PBS QDSC中,PVS的认证PCE高达13.8%。[16,17]低成本且可扩展的基于溶液的处理方法可以提供QD范围广泛的带镜,并且通常比有机发色团更好。尽管QDSC的PCE不断增加,但设备稳定性仍然是工业应用的重要挑战。除了PV之外,QD还进一步揭示了其在生物医学成像,显示和电子行业中的有希望的应用。与基于PB的PSC类似,越来越多的问题也引起了其潜在的Pb2Þ的毒性,
从1995年的第一个单一组合CDSE超级晶格开始(图2a),并以1999年的多层Sio 2超级晶格的发现达到顶点(图2B),无机纳米晶体超级晶格的多样性是通过使用良好的良好的良好的良好的方法,可欣赏使用的方法。[13–17]这些具有原子精度的上层建筑继续激励对新型超级晶格的研究。发现CDSE超晶格几乎十年后,多功能超晶格的发展受到平衡纳米级相互作用的困难,例如范德华力,例如范德华力,静电效应,空间排斥力,摩尔的骨骼二波尔相互作用以及氢键。[18]在2002年,Fe 2 O 3纳米晶体和PBSE量子点自组装成具有未经原始的高包装密度的高度有序的3D二元纳米晶体超晶格(图2C)。[15]从那时起,已经利用了15种超过15种类型的二元纳米晶体超级晶格,涵盖了广泛的材料,包括分号,金属和磁性构建块(图2E)。[16]此外,深入的研究证明,二元纳米晶体超级晶格的化学计量法主要由对稳定的纳米晶体的电荷指示,其熵,范德华瓦尔斯,固定剂,固定力和二极管力的贡献较小。在2003年,提出了包装模型来解释超晶格的结构构型并预测可能的布置(图2D)。[19]