基于人工智能的系统的开发面临着多重艰巨挑战。这些挑战主要一方面归因于相关工程学科(系统、安全、安保)的技术债务、其固有的复杂性、尚未解决的问题,另一方面归因于人工智能自主性的新兴风险、人工智能启发式与所需确定性之间的权衡,以及总体而言,定义、描述、评估和证明基于人工智能的系统足够安全和可信的难度。尽管过去几十年来,许多领域做出了大量研究贡献并取得了不可否认的进步,但实验性人工智能和可认证人工智能之间仍然存在差距。本文旨在“通过设计”弥合这一差距。考虑到工程范式是指定、关联和推断知识的基础,提出了一种新范式来实现 AI 认证。所提出的范式承认现有的 AI 方法,即联结主义、符号主义和混合主义,并提出利用它们作为知识捕获的基本特征。因此获得了一个概念元体,分别包含数据驱动、知识驱动和混合驱动的类别。由于观察到研究偏离了知识驱动,而是努力采用数据驱动方法,我们的范式呼吁依靠混合驱动方法来增强知识工程,以改善它们的耦合并从它们的互补性中获益。