摘要:这项研究研究了与新鲜西红柿恶化相关的细菌和真菌(Lycopersicum esculentum)。从卡杜纳(Kaduna)Ungwan Rimi地区的四(4)个不同的零售店获得了16(16)个番茄样品。使用标准方案确定所选番茄样品的近端组成。使用浇注板法用于与番茄样品分离细菌和真菌。使用磁盘扩散技术确定了针对细菌和真菌分离株的选定抗生素和抗真菌药物的抗生素图。The results of proximate composition showed that sample A had a moisture content of 94.10 %, 0.74% of ash, 0.97 % of crude protein, 0.66 % of crude fat, 1.10 % crude fiber, and 2.43 % of carbohydrate while sample B showed similar percentage composition of 93.89 % of moisture content, 0.86 % of ash, 1.0 % of crude protein, 0.69 % of crude fat, 1.34%的粗纤维和2.22%的碳水化合物。分离和鉴定的细菌是金黄色葡萄球菌,大肠杆菌和沙门氏菌。最普遍的细菌分离株是金黄色葡萄球菌,其50%,而沙门氏菌和大肠杆菌的分离菌则分别为25%。真菌分离株是尼日尔曲霉和曲霉菌的青霉素。尼日尔曲霉最为普遍,而青霉人SP的占30.8%,而曲霉菌的患病率最少为15.4%。在不同浓度的抗生素下,大肠杆菌对庆大霉素和链霉素具有抗性,对氯霉素,Spafloxacin,ciproflofloxacin,amoxycillincillin,peffloxacin,peffloxacin,tarvid和agenmentine敏感。沙门氏菌SP的抗菌易感性表明,它耐庆大霉素,对链霉素和粘膜链霉素的敏感性适中,对氯霉素,替福洛沙星,ciprofloflofloxin,ciproflofloxin,Amoxycillin,amoxycillin,pefloboxacin,pefloxacin,tarvid和Audmentine consives Adimenty consivessine spectimity敏感。金黄色葡萄球菌对rocephin,Zinacef和链霉菌素具有抗性,对氨木酸和阿莫西林敏感,并且对斑岩蛋白,环丙沙星,源自源环霉素,pefloxacin和Erythromycin敏感。抗真菌敏感性在其针对测试真菌分离株的有效性方面显示出不同浓度的变化。这些真菌的存在以及能够引起食物中毒的细菌分离株引起了人们对公共卫生风险的关注,这些风险可能与消耗变质的新鲜西红柿有关。用清洁或氯化水进行适当的处理,运输和彻底洗涤,将降低与细菌和真菌物种相关的番茄变质的风险。
空中真菌和细菌已被研究人员进行了广泛的研究。我们概述了空气中的致病微生物的分布和来源,以及对这些微生物在室外和室内环境中对人类健康造成的有害影响的详细描述。通过分析该领域发表的大量文献,我们就空降微生物如何影响我们的幸福感提供了宝贵的见解。这些发现突出了与各种自然和人介导的环境中暴露于空中真菌和细菌有关的有害后果。某些人群群体,包括儿童和老年人,免疫功能低下的个体以及各种类型的工人特别暴露,并且容易受到对空气微生物污染健康影响的有害影响。在各种室内和室外环境中,许多研究始终始终确定为替代性的替代品,cladosporium,cladosporium,penicillium,曲霉和镰刀菌作为主要的真菌属。在细菌,芽孢杆菌,链球菌,微球菌,肠球菌和假单胞菌中,从许多环境中收集的空气样品中出现了主要属。所有这些发现有助于扩大我们对空中微生物分布的了解,强调对进一步研究的关键需求并提高公众意识。总体而言,面对机载微生物污染物带来的风险,这些努力可能在保护人类健康方面起着至关重要的作用。
摘要这项研究确定了在Zamfara州Gusau的Tudun Wada Market中有助于降解地瓜的真菌。从各个市场中收集了36种地瓜样品,以及六个用于致病性测试的其他块茎。使用标准微生物技术来隔离,筛选和识别与变质相关的真菌。的发生百分比和致病性测试,以确定患病率并评估对块茎体重减轻的影响。存储过程中的生理变化,例如软化,干燥,变色和进攻气味。真菌计数范围从2.5±1.0 cfu/ml到4.±1.5 cfu/ml,yan dankali表现出最低的计数,Yan Kayan Koli最高。确定的真菌属包括尼日尔曲霉,曲霉曲霉,杂田Theobromoae,fusarium oxysporium,Rhizopus stolonifer和Penicillium物种。尼日尔曲霉的发生较高,而botryodiplodia theobromoae的出现最少。致病性测试有助于确定真菌在红薯变质中的作用,通过伤害穿透块茎,并在储存条件下繁荣发展。这些微生物的淀粉分解导致甘薯恶化。尽管针对马铃薯疾病的特定管理实践欠发达,但采用健康的种植材料和卫生措施可以减轻通过藤蔓片传播的地瓜中的真菌疾病。
吸入性过敏原 食物 屋尘螨 (d1) 蛋清 (f1) 猫上皮和皮屑 (e1) 牛奶 (f2) 马皮屑 (e3) 鱼(鳕鱼) (f3) 狗皮屑 (e5) 小麦 (f4) 兔上皮 (e82) 蛋黄 (f75) 虾 (f24) 猫尾草 (g6) 猕猴桃 (f84) 草地羊茅 (g4) 花生 (f13) 黑麦草 (g5) 巴西坚果 (f18) 车前草 (w9) 杏仁 (f20) 银桦树 (t3) 腰果 (f202) 开心果 (f203) 青霉菌 (m1) 核桃 (f256) 枝孢霉菌 (m2) 芝麻 (f10) 曲霉菌 (m3) 榛子 (f17) 链格孢霉菌(m6) 山核桃 (f201) 大豆 (f14) 白豆 (f15) 豌豆 (f12) 鹰嘴豆 (f309) 职业过敏原 青霉素过敏原 乳胶 (k82) 青霉素 G (c1) 和 V (c2) 洗必泰 (c8) 总 IgE
ochratoxin a(OTA)是一种主要由曲霉和青霉物种产生的霉菌毒素,对食品安全,动物健康和人类福祉构成了重大威胁。尽管进行了广泛的研究,但OTA生物合成,污染,代谢/降解和微生物相互作用的许多方面仍未得到解决。本期特刊将探讨OTA检测,(生物)降解和缓解策略的最新进展,重点是微生物生产者,排毒机制和创新的生物控制方法。我们欢迎涵盖广泛主题的原始研究和评论文章,包括产生OTA的真菌的分子生物学,微生物群在OTA降解中的潜在作用,新颖的检测技术和风险评估模型。特别鼓励讨论OTA对食品和环境系统的影响以及减少OTA污染的新兴策略的贡献。通过将微生物学,分子生物学,酶学,毒理学和食品科学的专家汇集在一起,该特刊将提高我们对OTA的理解并促进更安全的食品生产实践。
UL 2824测试符合ASTM D6329的要求,是UL年度GreenGuard认证计划的一部分,该计划认可了在室内空气质量方面具有出色性能的产品。该测试是在Dupont™Tedlar™壁橱产品上进行的,作为年度认证的一部分。墙壁由透明的Tedlar®PVF膜组成,使用粘合剂层压到装饰性PVC底物。将材料放入无菌的培养皿中,将已知浓度的brevi-compactum接种,并在25°C下以95%的湿度放入环境室中三周。正容易受到真菌生长的阳性对照样品,并平行运行以验证微生物的活性。在测试的开头和结束时计数菌落形成单元的数量(CFU),并根据表2所示的标准提供了评级。dupont™Tedlar™壁挂式墙面测试后达到了最高的评分,表明它对霉菌的生长具有很高的耐药性。用于计算此评级的菌落形成单元的数量在表3中显示了墙壁和对照材料的数量。
单系进化枝8。ascomycota:最大,二卡里亚,无性繁殖,无性孢子,常见的,简单的酵母菌对复杂的丝状形式。i。 Taphrinomycotina:5个类(肺炎史蒂斯氏菌)II。sacCharomyCotina:7个类(saccharomyces,pichia,candida)iii。pezizomycotina:13个班级,67个订单a。 capnodiales(cladosporium及相关属)b。 pleosporales(替代,双皮亚曲面,exserohilum,ulocladium和许多深谷物eumyycetoma)c。 Chaetothyriales(Cladophialophora,encophiala,Fonsecaea,Phialophora,Ramichloridium和Rhinocladiella); d。 Eurotiales(Aspergillus,Penicillium,Paecilomyces,Rasamsonia,Talaromyces,Thermoascus); e。洋黄素(皮肤植物[毛植物,微孢子虫,表皮植物和真菌和真菌带有arthroderma totomorphs],带有阿杰洛莫斯的热二态真菌[ajellomyces topomorphs [blastomyces,bastomyces,coccidioides,coccidioides ,, coccidioides,emmonsia,emmonsia,emmonsia,histoplaslaslaslaslaslaslaslaslaslaslaslaslasia ,, nanniziopsis); f。 shotoceales(Acronium and Allied属,镰刀菌和相关属,紫罗兰和Stachybotrys); g。 Microascales(Lomentospora,Scedosporium和scopopulariopsis); h。 Sordariales(Chaetomium,Madurella,Phialemonium);我。 Dothideales(金黄色葡萄球菌); j。 put虫(Rhytidhysteron); k。 Choniochaetales(Lecythophora); l。二十分(phaeoAcremonium); m。 Ophiostomateles(Sporothrix);和n。钙磷蛋白酶(胸膜骨化)
摘要:最近,在鹅香肠的成熟过程中,注意到了由氨和醋味组成的缺陷。位于意大利北部伦巴第塔的工艺设施的生产商要求我们确定该缺陷的原因。因此,本研究旨在确定潜在的负责药物来破坏这种鹅香肠。使用“针头探测”技术通过感觉分析检测到腐败。但是,由于高氨和醋的气味,变质的香肠无法销售。添加的起动培养物并未限制或抑制由Brevis(主要种类)以及粪肠球菌和粪肠球菌和粪肠球菌代表的腐败微生物。这些微生物在成熟过程中生长,并产生了大量的生物胺,这可能代表了消费者的风险。此外,Lev。Brevis,是一种杂种乳酸菌(LAB),还产生乙醇,乙酸和香肠颜色的变化。在体外确认生物胺的产生。此外,如先前的研究中所观察到的那样,腐败的第二个原因可以归因于成熟过程中生长的霉菌。分离的菌株,纳尔吉藤菌(Penicillium nalgiovense)作为开胃菜培养物和植木菌(P. lanosocoerulum),是一种环境污染物,在肉类和壳体之间生长出来,产生了大量的总挥发性氮,负责在成熟区和索苏群中感知到的ammonia味。这是对斑鸡香肠中Brevis占主导地位的第一个描述。
摘要:生物学方法目前是从土地上去除有害物质的最常用方法。这项研究工作着重于对石油污染土地的修复。研究了脂肪液烃和PAHS的生物降解,因此研究了生物放射B1和B2的结果。生物制备B1是根据自毒细菌开发的,由菌株Dietzia sp。in118,gordonia sp。in101,53 In Mycolicibacterium frederiksbergense,119 In119 In rhodococcus erythropolis,113 In113和Raoultella sp。in109,而生物制剂B2富含真菌,例如sydowii,asspergillus versicolor,candida sp。,cardosporium halotolerans,penicillium chrysogenum。由于在接种生物制备B1的土壤下进行的生物降解测试的结果,TPH和PAH的浓度分别降低了31.85%和27.41%。用生物制备B2的土壤接种b2更有效,因此TPH的浓度降低了41.67%,PAH降低了34.73%。另一个问题是使用Zea Mays的预处理G6-3B2土壤的植物修复。测试是在三个系统(系统1-Soil G6-3B2 + Zea Mays; System 2-Soil G6-3B2 +生物制品B2 + Zea Mays; System 3-SOIL G6-3B2 + BIPGA-PGA + ZEA MAYS)持续6个月。在系统3中获得了最高程度的TPH和PAH降低,分别为65.35%和60.80%。使用Phytotoxkit TM,Ostracodtoxkit TM和Microtox®在非接种系统1中记录了最低的植物修复效率,其中TPH的浓度降低了22.80%,PAH降低了18.48%。
全球有机废物是由水果,蔬菜及其果皮产生的。它主要是在垃圾填埋场或堆肥方法中分解的。食品加工行业,蔬菜市场和餐馆每天生产大量有机废物,通常在环境或堆肥中处置。从有机厨房废物中生产出生态酶是用于家庭废物污染的创新解决方案。这是一种从含有有机酸,酶和矿物质盐的有机废物物质获得的酶溶液。它是通过进行简单的批处理发酵而产生的,该发酵涉及红糖,水果或蔬菜废物的混合物以及1:3:10的水。通过使用蔬菜和果皮发酵工艺产生两种类型的生态酶,约90天涉及酿酒酵母。获得的最终液体或酶为棕色。来自(Cucurbita Maxima)的生态酶1含有水解酶,例如淀粉酶和脂肪酶。观察到微生物的多样性,像耶尔森氏菌,芽孢杆菌和真菌一样的细菌(如trichoderma sp。和penicillium sp。在生态酶2(Citron)中观察到没有酶和微生物。Eco-enzyme 1具有50%稀释的生态酶1可有效降低各种参数,例如dra剂,COD,TDS,硝酸盐,硝酸盐,硝酸盐和铵。此外,与对照相比,它在10天内促进了植物的生长。因此,本研究概述了如何使用生态酶来治疗成本效益和环境友好的工业废水。