我们承认与F. Zhang,T。Senthil,L。Levitov,L。Fu,Z。Dong和A. Patri的有用讨论。L.J.承认斯隆奖学金的支持。T.H.的工作得到了NSF Grant No的支持。DMR- 2225925。这项工作的设备制造得到了STC集成量子材料中心的支持,NSF Grant No。DMR-1231319。设备制造是在哈佛纳米级系统和MIT.NANO的哈佛中心进行的。一部分设备制造得到了USD(R&E)在合同号下的支持。FA8702-15-D-0001。K.W. 和T.T. 承认JSPS Kakenhi(赠款号20H00354、21H05233和23H02052)和日本Mext的世界首屈一指的国际研究中心计划(WPI)。 H.P. 确认NSF赠款号的支持。 PHY-1506284和AFOSR授予号。 FA9550-21-1-0216。 这项工作的一部分是在国家高磁场实验室进行的,该实验室得到了国家科学基金会合作协议号的支持 DMR- 2128556*和佛罗里达州。K.W.和T.T.承认JSPS Kakenhi(赠款号20H00354、21H05233和23H02052)和日本Mext的世界首屈一指的国际研究中心计划(WPI)。H.P. 确认NSF赠款号的支持。 PHY-1506284和AFOSR授予号。 FA9550-21-1-0216。 这项工作的一部分是在国家高磁场实验室进行的,该实验室得到了国家科学基金会合作协议号的支持 DMR- 2128556*和佛罗里达州。H.P.确认NSF赠款号的支持。PHY-1506284和AFOSR授予号。FA9550-21-1-0216。这项工作的一部分是在国家高磁场实验室进行的,该实验室得到了国家科学基金会合作协议号DMR- 2128556*和佛罗里达州。
By theoretically analyzing the recent temperature dependent transport data [Lu et al ., arXiv:2408.10203] in pentalayer graphene, we establish that the experimentally observed transition from low-temperature quantum anomalous Hall effect (QAHE) to higher-temperature fractional quantum anomalous Hall effect (FQAHE) is a crossover phenomenon arising from the competition between interaction and disorder energy尺度可能为零的温度基态具有局部绝缘体或具有量化异常效果的Chern绝缘子。尤其是,对Qahe有利于Qahe的吸引人的抑制作用是由于载体的低温定位而引起的,因为载体的低温定位会导致相互作用效应。我们提供了支持交叉场景的数据的详细分析。
我们严格分析了最近报道的整数观察(IQAHE)和分数(FQAHE)量子异常在Pentalayer石墨烯中应用磁场的量子异常效应。我们对实验数据的定量激活和可变范围跳跃分析表明,观察到的iqahe和fqahe在不同填充物处的iqahe和fqahe都具有5 k-10 k的相似的激发差距。此外,我们还发现,观察到的fqahe表现出一个较小的隐藏背景群体的范围,范围很小,较小的隐藏背景序列> 10kΩ,> 10kΩ iqahe。这两个发现都令人惊讶,并且与2D半导体系统中相应的高场整数和分数量子霍尔效应的现象学现象学不一致。
z/n。在与己贡氮化硼(HBN)排列的菱形堆积石墨烯中,我们发现参数状态QAHC-2和QAHC-3的能量低于传统的QAHC-1,在总填充总填充ν= 1每个moir´e单位单元。这些状态都具有Chern数量C TOT = 1,并且与实验中观察到的QAH效应相结合。较大的QAHC状态具有更好的动能,这是由于Pentalayer石墨烯的独特墨西哥帽子分散剂,可以补偿相互作用能量的损失。与QAHC-1不同,QAHC-2和QAHC-3也打破了Moir'E翻译对称性,并且与Moir´e Band绝缘子明显不同。我们还简要讨论了整数QAHC和分数QAHC态在填充ν= 2/3的竞争此外,我们注意到Moir'E潜力的重要性。较大的Moir´e电势可以大大改变相图,甚至有利于C = 2 Chern频段的QAHC-1 ANSATZ。
摘要:整数和分数量子厅效应(IQHE和FQHE)从1980年代开始引起了很多关注。通常,FQHE的实现需要一个大的磁场(以20特斯拉的阶段为单位)。理论家提出了FQHE在平坦的Chern频段中没有任何磁场的实现,但在传统的固态系统中显然具有挑战性。在这次演讲中,我将在过去六年中在Moiré材料的新领域中介绍理论和实验性努力,最终实现了这一目标。可以通过简单地将两个二维层(例如石墨烯)换一个小角度来产生moiré超晶格。可以从如此简单的设置中出现诸如量子厅物理等物理学(例如量子霍尔物理学)的相当惊人的相关物理。我将特别强调我们的量子异常晶体晶体理论,以解释MIT的Long Ju's Group在Pentalyer石墨烯中观察到的QHE。
在拓扑非微不足道中强烈相互作用的电子可能形成物质的外来阶段。一个特别有趣的例子是分数量子异常的霍尔相,最近在扭曲的过渡金属二核苷和Moir´e石墨烯多层中发现。然而,已证明它在Pentalayer石墨烯中低于100 MK温度下的某些填充因子中不稳定,有利于新型的整数量子量子异常霍尔相[Z. Lu等。,Arxiv:2408.10203]。我们建议在较高温度下稳定分数阶段的罪魁祸首是其丰富的边缘状态结构。在其边缘上具有多种手性模式,由于多余的边缘模式熵,在较高温度下,分数相具有较低的自由能。在这种情况下,我们做出了不同的预测,包括分数熵增强的系统大小依赖性,以及相位边界如何随温度的函数而变化。
原子薄材料的高度可调的Moir'E异质结构的出现振兴了二维材料中复杂订单的探索。虽然对二维电子气体(2DEGS)的研究是一种古老的,例如导致发现整数和分数量子厅效应,但由于层之间的晶格间距不匹配或层之间的旋转角度的不匹配引起的Moir'E超级突变性增加了新的复杂性。这是因为纯静电门可以用于调整与完全填充由超级晶格形成的Bloch带所需的电子密度相当的,该级别的波长通常在数十纳米中。(相反,由于少数埃斯特罗姆的晶格尺度周期性,门控能否访问显微镜结构的特征。)除了允许实验者能够在单个样本中访问宽掺杂范围,在这种状态下,传统的2DEG近似将电子分散剂视为有效质量近似中的抛物线,通常不再适当,并且需要考虑到其充实的丰富度,包括与乐队拓扑的现象相连的太多。这些系统的第二个特征是,在相互作用效果等于或超过带宽的相互作用效果中,Moir´e重建的频段通常是“窄”的。因此,Moir´e异质结构已成为探索二维相互作用和拓扑相互作用的重要平台。[2]。)该评论专门用于Moir´e名册的相对较新的参赛者:与六边形硼(HBN)硝酸盐底物对齐的菱形诉状石墨烯(R5G)。首先,让我简要总结实验设置,然后再转向本评论的主要重点:他们的理论分析。(对实验的更详细讨论是在Ashvin Vishwanath的最新评论中(JCCM,2023年12月)。)n -layer菱形石墨烯由石墨烯层组成,这些石墨烯层以楼梯状模式堆叠。沿着堆叠方向捕获物理的层间隧道式汉密尔顿式隧道是让人联想到su-schrieffer-heefer模型,因为低能电子状态是限制在堆栈顶部和底部附近的“零模式”。这些“零模式”的分散体表现出n倍带触摸和从单个石墨烯层∗继承的山谷变性。如果多层的一侧(几乎)与HBN对齐,那么石墨烯和HBN之间的轻微晶格不匹配会强烈修改频带结构,从而导致几乎平坦的频段对垂直位移位移场的应用非常敏感。(许多不同的作品都研究了Pentalyer的单粒子物理;在d的较大值下进行了R5G-HBN [1]的实验,其中单粒子计算名义上给出了Chern数字C =±5的传导带(valleys以相等的和相反的方式,以时间逆转对称性的方式获得了相等和相反的数字),但与其他频段相比隔离很差(这些频段非常小)(非常小)。这使得两个实验结果非常引人注目:
基于电阻转换(RS)效应的非挥发性存储设备由于其出色的特征性(例如良好的尺寸可伸缩性和较小的操作电压)而被认为是未来内存应用的最有前途的技术。RS效应基于在涂在电极上的电压下安装在金属电极之间的介电膜中的导电膜(CF)的生长[1,2]。虽然HFO 2是重新拉统设备的最广泛研究的电介质之一[3],但交替分层的纳米材料引起了人们的兴趣[4],因为筛选了介电层最适当的材料组合是Reram Fabrication的介电层的最佳组合。在以前进行的几项作品中,HFO 2 -AL 2 O 3纤维与单个HFO 2和Al 2 O 3薄膜相比,已经证明了高级RS特性。电阻开关行为已在Al 2 O 3 / HFO 2 BiLayer [5,6,7],Al 2 O 3 / HFO 2 / Al 2 O 3 Trilayer [4,7]和Pentalayer [7]结构Ald -Grown在225-250°C处,总厚度达到20 nm。在另一项研究中,Al 2 O 3 / HFO 2 / Al 2 O 3在150ºC下生长的三层,厚度为12 nm,能够证明多级切换特性[8]。周期性的HFO 2 -AL 2 O 3多层含有等量的HF和Al在250ºC时的厚度为6.5 nm [9]。然而,在后一项研究中,没有发现成分层的厚度。hf x al 1 - x o y纤维在240ºC下生长,分级填充,从而从9:1到1:4 [10]变化了HFO 2:Al 2 O 3 ALD循环比率。另一项研究表明,HFO 2 -AL 2 O 3双层的30 nm厚的纳米胺由1.2