近红外(NIR)光检测是对应用程序,例如监视系统,面部识别,工业排序和检查,脉搏氧化,光学相干性层析成像和成像等应用中对技术解决方案不断增长的需求的关键。[1-10]无机半导体(例如GE,INGAAS,PBS和HGCDTE)允许宽带光检测从0.8至10 µm,在10 10 Jones附近或更高范围内具有特定的检测(D *)。[11]同时,其中一些传统材料含有有毒的重金属,总体生产成本相当高。此外,商业NIR成像传感器的分辨率有限,这与光活性层通过电线键入电气连接安装到硅读出的集成电路(ROIC)的事实有关。[12]这将最小的像素螺距限制在大约10 µm上,因为需要ROIC和活动层之间非常精确的对齐。为了允许像素大小的缩放,一项持续的努力集中在ROIC上直接生长光活性层。然而,由于活性层与ROIC或电气互连之间的热膨胀系数的差异,经常观察到温度波动时的设备分解。[13]调用半导体的另一个限制是它们的宽带吸收。这只能通过增加设备复合度来实现波长的选择性,例如通过其他光学滤镜和二分色棱镜,并对空间分辨率提出了额外的限制。[14]
摘要 - 我们已经设计了多表面Halbach高温超导体 - 永久磁导向道(HTS- PMG)的磁悬浮运输(MAGLEV)的布置(MAGLEV),并研究了动态响应特性外还研究了静态力参数。使用三种不同的HALBACH HTS – PMG排列与多面(6 HT,4 HTS),并在三个不同的冷却高度(FCHS)中进行静态和动态测量。使用多表面HALBACH HTS -PMG排列获得了较大的垂直载荷能力和更宽的载荷间隙。此外,多面排列的指导力值的近四倍是单个侧面的指导力值,这表明多面排列中的侧面HTSS对指导力有显着贡献,因此磁磁系统的横向运动稳定性。垂直和横向动态刚度值都随着FCH的降低而增加,也可以说,磁磁系统的动态刚度性能可以增强,尤其是通过使用多表面HALBACH HTS -PMG布置在侧向方向上。通过系统的2-D近似来支持这些实验观察结果。我们表明,通过使用单个材料参数(临界电流密度J C)进行整个超导组,可以令人满意地预测完整的一系列实验。从这项研究获得的静态和动态参数和
摘要:相变材料(PCM)基于基于网格相互作用的住宅建筑物的热能储存(TES)可以提供能源和成本减少的优势。研究人员确定,这些好处差异很大,具体取决于PCM相变温度(PCT),总TES存储容量,系统配置以及建筑物的位置和气候。在这项研究中,使用理想化的方法报道了新型热泵(HP)集成TES系统的初步技术经济性能。在美国的三个不同气候中,为住宅建筑物的1年供暖和冷却负荷建模了简化的HP-TES。对HP的蒸气压缩系统进行了修饰,以与TES集成,并由HP介导了所有对TES的热传递。使用单个PCM进行加热和冷却,PCT和TES容量有所不同,以观察它们对建筑物能源消耗,峰值负载转移和节省的影响。在纽约市的PCT为30℃的PCT和休斯顿和伯明翰的20℃时,电力消耗,公用事业成本和高峰电需求量的最大减少。通过使用使用时间时间表来减少峰值负载,分别减少了休斯敦,纽约市和伯明翰的峰值能源消耗。TE具有170 MJ存储容量,允许最大需求从高峰时段转移到非高峰时段,一旦TES容量等于在最极端的环境条件下所经历的每日建筑物热负载,回报率就会降低。
增材制造 (AM) 工艺通过逐层沉积材料来构建机械零件 [1] 。在金属 AM 工艺中,粉末床熔合 (PBF) 的应用最为广泛 [2] 。PBF 方法使用激光或电子束将粉末床顶部的金属粉末层与下面的层熔合在一起。激光 PBF (LPBF) 的一个众所周知的应用是通用电气开发的尖端航空推进发动机内的燃油喷嘴,其中约 20 个零件的传统设计减少为单个 LPBF 构建 [3] 。虽然这些进步意义重大,但目前工业中的 LPBF 构建实践通常仅限于单一合金。相比之下,定向能量沉积工艺已用于制造金属复合材料,可用于生产需要多种材料的高度工程化机械零件 [4] 。 ODS 合金是一种金属基复合材料,其中纳米级氧化物可抑制高温下的晶粒生长,从而提供高温力学性能和高抗蠕变性[5]。ODS 铁素体合金作为耐辐射包层和结构材料的替代品,受到核工业的广泛关注。氧化物的小尺寸和高数密度导致了大量复合界面,这被认为可以消除点缺陷,防止缺陷在失效前聚集[6]。然而,由于颗粒的浮力,ODS 合金的铸造具有挑战性[7]。因此,传统的粉末冶金法用于生产 ODS
摘要猪养殖是一个重要的行业,需要采取积极的措施来进行早期疾病检测和压碎症状监测,以确保最佳的猪健康和安全。这篇评论探讨了用于猪场的猪病和小猪症状症状监测的高级热传感技术和基于计算机视觉的热成像技术。红外热仪(IRT)是一种无创和有效的技术,用于测量猪体的渗透,提供了诸如非破坏性,长距离和高敏感性测量等优势。与传统方法不同,IRT提供了一种快速而节省劳动的方法来获取受环境温度影响的生理数据,对于了解猪体生理和代谢至关重要。IRT帮助早期疾病检测,呼吸健康监测和评估疫苗接种效果。 挑战包括影响测量精度的身体表面发射率变化。 热成像和深度学习算法用于猪行为识别,背面有效地检测背侧平面。 通过热成像,深度学习和可穿戴设备进行远程健康监测促进了对猪健康的非侵入性评估,从而最大程度地减少了用药的使用。 高级传感器,热成像和深度学习的倾斜度显示出疾病检测和猪养殖的改善的潜力,但是必须解决成功实施的挑战和道德考虑。 它还讨论了IRT技术的好处和局限性,并提供了当前研究领域的概述。 本研究IRT帮助早期疾病检测,呼吸健康监测和评估疫苗接种效果。挑战包括影响测量精度的身体表面发射率变化。热成像和深度学习算法用于猪行为识别,背面有效地检测背侧平面。通过热成像,深度学习和可穿戴设备进行远程健康监测促进了对猪健康的非侵入性评估,从而最大程度地减少了用药的使用。倾斜度显示出疾病检测和猪养殖的改善的潜力,但是必须解决成功实施的挑战和道德考虑。它还讨论了IRT技术的好处和局限性,并提供了当前研究领域的概述。本研究本评论总结了猪养殖行业中使用的最先进的技术病因,包括计算机视觉算法,例如对象检测,图像细分和深度学习技术。
增材制造 (AM) 可以制造出传统制造方法无法实现或不经济的复杂结构。其独特的功能推动了多种打印技术的出现,并引发了对材料采用的广泛研究,特别是铁基、钛基和镍基合金。同时,铝作为一种轻质结构材料,其凝固范围大、反射率高,大大降低了铝与 AM 的兼容性。不兼容性的根源在于铝在 AM 的快速循环热条件下的不稳定行为及其与激光的相互作用较差。这阻碍了基于激光的铝 AM 的发展,并加剧了目前中温范围内轻质结构材料的缺乏。铝基复合材料 (AMC) 具有作为热稳定轻质结构材料的巨大潜力,结合了铝基体的轻质特性和增强相的强度。然而,AMC 的制造主要采用传统方法,仅实现中等体积分数的增强,同时与 AM 相比零件复杂性有限。为了应对这些挑战,原位反应打印 (IRP) 作为一种新型 AM 方法被采用,利用不同元素粉末混合物的反应产物来制造具有超高体积分数金属间增强体的 AMC。在本研究中,系统地研究了钛添加到元素铝原料粉末中对材料加工性、微观结构特征和力学性能等不同方面的影响。结果表明,与现有的 AM 铝合金和其他 AMC 相比,IRP 可以克服 AM 与铝之间的不兼容性,并生产出具有特殊体积分数增强体和出色刚度增强的 AMC。
主要是由绿色房屋气体排放驱动的人类全球变暖,其稳定速度约为0.2°C/十年,SinceatLeast1970 1.然而,几个阶段性地点在全球平均表面温度的速度上逐渐升高(GSTA)左右(GSTA)的全球平均水平升高(GSTA)的次数较小(GSTA),这是4个4号(GSSA),并增加了1990年4月4日。海水含量积累的加速度6。 因素因人为排放而导致的,包括富集的温室气体堆积,以及硫排放清理7后人为气溶胶的冷却损失,尤其是在中国和全球运输部门。 尽管变暖速率明显增加,并且赤道过渡到ENSO阳性状态,但通过2023年记录的创纪录的表面温度异常令人惊讶。 所有主要温度Seriesshow 2023是有记录以来最温暖的一年。 设定记录的边距约为0.15°C,也是不寻常的,但在强劲的厄尔尼诺时代却没有前所未有的。 值得注意的是,几个海洋盆地在一年中的大部分时间里都有前所未有的表面温度,包括赤道和北太平洋,北大西洋和南大洋8、9。 一个核心问题是,这种强烈的异常是与内部变异性10和已知的衰老量表区域强迫一致,还是表明气候系统的迅速变化,或者我们对其的影响4、11。 清理运输排放量与2021 Hunga Tonga Volcano 13一样,以及与气雾相关的透露措施的抗态度高于预期的气候敏感性。主要是由绿色房屋气体排放驱动的人类全球变暖,其稳定速度约为0.2°C/十年,SinceatLeast1970 1.然而,几个阶段性地点在全球平均表面温度的速度上逐渐升高(GSTA)左右(GSTA)的全球平均水平升高(GSTA)的次数较小(GSTA),这是4个4号(GSSA),并增加了1990年4月4日。海水含量积累的加速度6。因素因人为排放而导致的,包括富集的温室气体堆积,以及硫排放清理7后人为气溶胶的冷却损失,尤其是在中国和全球运输部门。尽管变暖速率明显增加,并且赤道过渡到ENSO阳性状态,但通过2023年记录的创纪录的表面温度异常令人惊讶。所有主要温度Seriesshow 2023是有记录以来最温暖的一年。设定记录的边距约为0.15°C,也是不寻常的,但在强劲的厄尔尼诺时代却没有前所未有的。值得注意的是,几个海洋盆地在一年中的大部分时间里都有前所未有的表面温度,包括赤道和北太平洋,北大西洋和南大洋8、9。一个核心问题是,这种强烈的异常是与内部变异性10和已知的衰老量表区域强迫一致,还是表明气候系统的迅速变化,或者我们对其的影响4、11。清理运输排放量与2021 Hunga Tonga Volcano 13一样,以及与气雾相关的透露措施的抗态度高于预期的气候敏感性。然而,可能性仍然是2023 GSTA记录仅仅是正在进行的原子源性影响的组合,以及在观察到的年际和际变异性范围内的海面温度模式。
信息处理的热力学能量成本是一个被广泛研究的课题,既有其基本方面,也有其潜在的应用[1-9]。该能量成本有一个下限,由 Landauer 原理确定[10]:在温度 T 下,从存储器中擦除一位信息至少需要 k BT ln 2 的功,其中 k B 为玻尔兹曼常数。这是很小的能量,在室温(300 K)下仅为 ∼ 3 × 10 − 21 J,但它是一个通用的下限,与所用存储器的具体类型无关,并且与广义 Jarzynski 等式 [11] 相关。已在多个经典实验中测量了兰道尔边界 (LB),这些实验使用了光镊 [ 12 , 13 ]、电路 [ 14 ]、反馈阱 [ 15 – 17 ] 和纳米磁体 [ 18 , 19 ],以及捕获超冷离子 [ 20 ] 和分子纳米磁体 [ 21 ] 的量子实验。在准静态擦除协议中可以渐近地达到 LB,其持续时间比上述用作一位存储器的系统的弛豫时间长得多。实际上,当在短时间内执行擦除时,可以使用最优协议最小化此类过程所需的能量,这些协议已经过计算 [ 22 – 27 ] 并用于过阻尼系统 [ 17 ]。更快接近渐近 LB 的另一个策略当然是减少弛豫时间。然而,对于非常快的协议,人们可能想知道机械(电子)系统中的惯性(感应)项是否会影响其可靠性和能量成本。
高温超导体由于其独特的电子特性和非常规的超导行为而引起了极大的关注。尤其是,由高能离子植入,压力和电磁场等外部场引起的高体性超导材料的相变已成为研究热点。但是,潜在的机械主义尚未完全理解。第一原理计算被广泛认为是深入探索这些内在机制的有效方法。在这项研究中,使用第一原理计算来研究氧空位现象对不同功能下YBA 2 Cu 3 O 7(YBCO 7)的电子传递性能和超导性能的影响(PBE,PBE + U,HSE06)。结果表明,氧空位显着改变了带的结构,并且在不同功能的预测中观察到了考虑的差异。YBA 2 Cu 3 O 6(YBCO 6)的计算带隙范围为0至1.69 eV。较大的带隙表明是绝缘状态,而没有带隙的缺乏表明材料保持金属。通过将结果与实验结果进行比较,我们发现HSE06功能提供了最合理的预测。带隙的存在或不存在主要受铜轨道的影响。氧气空位会导致材料的C轴拉长,这与实验中He-ion辐照后X射线差异(XRD)分析中观察到的趋势是一致的。我们的发现有助于解释在外部田地下,尤其是He-Ion Irra-priation的金属 - 绝缘体相变,并为开发高温超导材料及其设备应用提供了理论基础和新见解。
摘要。div>十年级的海洋学,环境和生态变化已在萨利什海(Salish Sea)报道,这是东北太平洋地区的生态富有生产力的内陆海洋,支持数百万people的经济和文化。但是,存在与物理水性质有关的大量数据差距,使得很难评估趋势和物理海水性质之间的影响途径和海洋生态系统的生产力。为了解决这些差距,我们介绍了Salish Sea(Hotssea)V1的后标,这是一种使用核心用于欧洲海洋建模(NEMO)海洋发动机的3D物理海洋学模型,其时间覆盖为1980 - 2018年。我们使用了一种实验方法来逐步评估用于边界强制性大气和海洋重新分析产品的敏感性以及模型网格的Hor-Izontal离散化(〜1.5 km)。量化了从强迫继承的偏差,并发现在一个海洋边界上应用的简单温度偏置校正因子可实质上提高模型技能。盐度和温度的评估表明,在佐治亚州的海峡中表现最好。相对较大的偏见发生在近地表水域中,尤其是在模型网格的水平分辨率的托架狭窄的子域中。但是,我们证明该模型模拟了温度异常,并且在一般同意的观察结果一般同意的是,在整个水柱上具有世俗的变暖趋势。总体而言,尽管从强迫继承了偏见HOTSSEA V1在整个域的北部和中部部分观察到了稀疏的观测值。
