连贯的完美吸收器利用光的干涉性质,将所有光场的入射能量沉积到原本弱吸收的样品中。这个概念的缺点是,相干吸收剂中必要的破坏性干扰很容易通过频谱或空间破坏传入的光场破坏。最近通过特殊点物理学和使用退化的腔体的见解克服了这两个局限性。在这里,我们展示了如何将这两个概念组合到新型的腔设计中,从而允许宽带特殊的点吸收任意波前。我们提出了这种大规模退化的特殊点吸收器的两个可能的实现,并将分析结果与数值模拟进行了比较。
这里,S 是通过模拟得出的散射矩阵,其中对麦克斯韦方程进行了数值求解。参数 r 1 、t 1 、r 2 和 t 2 分别是 E in1 和 E in2 的单束光束的反射和透射系数。值得注意的是,在这种配置下,假设在此设置中互易性保持不变,则两个入射方向的透射系数相同(即 t = t 1 = t 2 )。反射的不对称性源于设计结构相对两侧排列的十字形石墨烯贴片的不同尺寸。
他在之前的采访中解释说,量子传感“基本上是使用光子(光粒子)进行测量”。“我们使用光子进行传感,量子传感是利用光的量子态开发高灵敏度探测器来测量物理特性(如吸收、温度、磁场、化学场等)的研究领域,”李说。“我决定来查塔努加是因为这里的量子计划是整个学校 [UTC] 试图推动的战略计划之一,这里是量子机会之地,”他说。“这座城市的风景给我留下了深刻的印象;这是一个适合居住和养家的地方。我很高兴我做出了这个决定。”
哥斯达黎加通常被视为一个可持续发展的国家,但它面临着未来挑战,即在气候变化影响和整合间歇性可再生能源的需要下维持其可再生能源的表现。本论文探讨了哥斯达黎加在保持能源安全的同时实现 100% 可再生电力的机会和障碍,尽管它处于发展中国家地位。通过政策文件分析和主要利益相关者访谈,本文在绿色机会之窗框架内描述了该国的能源系统,确定了制度、市场和技术窗口,并评估了当前系统应对机遇和挑战的能力。研究发现,尽管哥斯达黎加需要改进部门系统并实现监管现代化,但它在部署新兴清洁能源技术方面仍然具有巨大潜力。这项研究为发展中国家在气候变化和资源约束下实现可持续能源转型提供了见解,强调了平衡可持续性、可负担性和能源安全的系统战略的重要性。
摘要赞助的搜索在电子商务收入生成中起着至关重要的作用,广告商从战略上竞标了关键字,以通过相关的搜索查询吸引用户的注意力。但是,确定给定查询的相关关键字的过程提出了重大挑战,因为巨大而不断发展的关键字景观,模棱两可的意图和主题多样性。本文重点介绍了获得大量广告收入和用户参与度的机会,其中很大一部分的查询无法检索任何赞助的广告。为了利用此机会,我们介绍了基于库存意识的抹布生成AI模型(Invawr-rag),该模型集成了高级语义检索和实时库存数据。该模型结合了动态生成且历史上成功的查询,以与可用的库存和广告活动保持一致,同时多样化重写的查询以增强相关性和用户参与度。初步结果表明,填充率和平衡相关性指标的显着增加了68%,这表明广告收入增加了强大的潜力。Invawr-rag模型设置了动态查询优化的新标准,可在沃尔玛的数字平台上显着改善广告相关性,广告客户ROI和用户体验。
摘要:在这项工作中,我们引入了一种新颖的连贯的完美吸收器,通过强调通过使用不对称石墨烯元素的宽带宽度,厚度减小,可调性和直接设计来突出其新颖性。此设计均包含在硅基板两侧排列的正方形和圆形石墨烯贴片。具有优化的结构设计,该吸收器始终在1.65至4.49 THz的频率范围内捕获超过90%的传入波,而石墨烯费米水平为0.8 eV,整个设备的测量仅为1.5 um。这使我们的吸收器比以前的设计更有效和紧凑。通过将元表面的几何设计与石墨烯费米水平相结合,可以显着增强吸收器的有效性。可以预料,这种超薄的宽带连贯的完美吸收装置将在出现的芯片上通信技术中起着至关重要的作用,包括光调节器,光电探测器等。
晶格共振是由周期性纳米结构阵列支持的集体模式。它们源自阵列各个成分的局部模式之间的相干相互作用,对于由金属纳米结构制成的系统,这通常对应于电偶极等离子体。不幸的是,基本的对称性原因使得二维 (2D) 电偶极子排列无法吸收超过一半的入射功率,从而对传统晶格共振的性能造成了很大的限制。这项工作引入了一种克服这一限制的创新解决方案,该解决方案基于使用由包含一个金属和一个介电纳米结构的单元格组成的阵列。使用严格的耦合偶极子模型,可以证明该系统可以支持两个独立的晶格共振,分别与纳米结构的电偶极子和磁偶极子模式相关。通过调整阵列的几何特性,这两个晶格共振可以在光谱域中精确对齐,从而导致入射功率的全部吸收。这项工作的结果为合理设计能够产生完美吸收的晶格共振阵列提供了清晰而又普遍的指导,从而充分利用这些模式的潜力,用于需要有效吸收光的应用。
•EC技术可确保无电气和温度分层的风险均匀充电,从而提高电池性能。•在所有板上实现最佳的充电接受度,从而减少压力并延长电池寿命。•与传统充电方法相比,高达30%的电池充电速度高达30%,并节省高达20%的能源成本。•最多减少70%的用水量和最小化的气体。•充电期间最多可降低电池温度,非常适合温暖的环境。•较短的充电时间意味着您的电池准备更快,非常适合高需求,多变度操作。•增强的电池性能和更长的寿命,特别适合与机会充电。•受益于更长的维护间隔和降低总体维护成本。
•请确保您的麦克风和视频在会议期间关闭。这是为了避免在演示过程中进行任何干扰,并协助连接质量。•如果您需要休息一下,请随时随时关闭电话并重新加入。•如果需要,可以使用实时字幕。•已记录事件并将共享。•请通过聊天设施询问您遇到的任何问题。我们将尝试在活动期间解决问题,但是如果我们不这样做,我们将在活动结束后进行跟进。•如果您看不到聊天,请将您的问题发送给sarah.black@healthinnovationnenc.org.uk
房颤(AF)是一种普遍的心律不齐,而肺静脉分离(PVI)已成为其处理中的基石。耐用病变的产生对于成功和持久的PVI至关重要,因为不一致的病变导致消融后的重新连接和复发。已经开发出各种方法来评估体内病变质量和跨性别的方法,用作改善病变创造的替代物,并利用射频(RF)能量的长期结局。本综述手稿研究了使用RF能量时每天在电生理实验室中每天使用的病变创造和不同病变评估技术的生物物理学。这些方法为病变有效性提供了宝贵的见解,促进了优化的消融程序并减少心律不齐的复发。但是,每种方法都有其局限性,建议在AF导管消融过程中进行全面病变评估的技术组合。成像技术的未来进步,例如磁共振成像(MRI),光学相干断层扫描和光声成像,在进一步增强病变评估和指导治疗策略方面有望。