向供应链经理公司的资料报告AAA Grogrers是肯尼亚领先的蔬菜,鲜花和鳄梨的领先出口商之一。我们正在寻找一名出口/易腐货物官员来加入我们的销售出口 - 在内罗毕总部的VEG团队。的工作目标是在管理出口和易腐商品运营方面提供出色的支持,以确保日常活动的平稳流动和有效利用资源。此角色涉及监督与易腐商品有关的敏感和时间敏感问题的处理,并与各个部门紧密合作,以确保及时交付和遵守法规。理想的候选人将是积极主动的,高度组织的,并能够预见挑战,以确保所有出口操作顺利进行,同时保持与内部团队和客户的良好沟通。您的任务和责任
QED的Micropurge MP100蠕动泵系统结合了有效的电动机和泵头,使其平稳,安静的操作和出色的流量控制。内置在硬壳外壳中,泵的头和控制面板已完全封闭,用于安全的现场运输和运输 - 无需单独的外壳。无刷直流电动机的低功耗可提供较长的电池寿命,使场更有效,并且面板上的积分电压表可以快速查看电池充电状态。使用掉落管,掉落管套件和易于安装井盖的专用采样系统。Micropurge MP100是蠕动泵的新品种,考虑到您的田野。
摘要:在一个可持续性和有效资源利用率至关重要的时代,闭环供应链(CLSC)是一种关键方法,尤其是在易腐商品的背景下。产品的易腐性为供应链管理增添了一层复杂性,确定了定位的创新策略,以最大化产品寿命并最大程度地减少废物。这篇全面的评论文章深入研究了在CLSC框架内易腐产品的整合。该研究彻底研究了现有的研究,以识别差距并概述未来的研究方向。它强调了管理易腐产品的独特挑战和复杂性,这是一种至关重要但经常被忽视的可持续供应链实践的组成部分。评论重点介绍了效率和可持续性之间的平衡,强调了后勤和循环经济原则在增强供应链弹性方面的重要性。通过综合各种方法和发现,本文对CLSC中可腐烂的产品管理的现状进行了整体观点,为学术界和行业从业人员提供了宝贵的见解。该研究不仅有助于对CLSC的理论理解,而且还提出了实用方法以进行优化,并与更广泛的可持续性目标保持一致。
间质微环境通过多种分子介质的综合作用保护肺癌免受靶向治疗的伤害 Bina Desai 1,2 、Tatiana Miti 3 、Sandhya Prabhakaran 3 、Daria Miroshnychenko 1 、Menkara Henry 1 、Viktoriya Marusyk 1 、Chandler Gatenbee 3 、Marylin Bui 4 、Jacob Scott 5 、Philipp M. Altrock 6 、Eric Haura 7 、Alexander RA Anderson 3 、David Basanta 3 、Andriy Marusyk 1,8 . 1. 美国佛罗里达州坦帕市 H Lee Moffitt 癌症中心和研究所代谢和生理学系 2. 南佛罗里达大学癌症生物学博士项目,佛罗里达州坦帕市 3. 佛罗里达州坦帕市 H Lee Moffitt 癌症中心和研究所综合数学肿瘤学系。 4. 佛罗里达州坦帕市 H. Lee Moffitt 癌症中心和研究所病理学系。 5. 美国俄亥俄州克利夫兰克利夫兰诊所转化血液学和肿瘤学研究系 6. 德国普伦马克斯普朗克进化生物学研究所理论生物学系 7. 美国佛罗里达州坦帕市 H. Lee Moffitt 癌症中心和研究所胸部肿瘤学系 8. 佛罗里达州坦帕市南佛罗里达大学分子医学系。 摘要:针对致癌信号成瘾的靶向疗法,例如 ALK+ NSCLC 中的 ALK 抑制剂,通常可诱导强烈而持久的临床反应。然而,它们无法治愈转移性癌症,因为一些肿瘤细胞在治疗过程中仍会持续存在,最终产生耐药性。治疗敏感性不仅可以反映细胞内在机制,还可以反映基质微环境的输入。然而,肿瘤基质对体内治疗反应的贡献仍然不甚明了。为了填补这一知识空白,我们评估了基质介导的耐药性对 ALK+ NSCLC 异种移植模型中一线 ALK 抑制剂阿来替尼治疗反应的贡献。我们发现基质近端肿瘤细胞部分免受阿来替尼的细胞抑制作用。这种影响不仅在缓解期观察到,而且在复发期也观察到,表明基质介导的耐药性对持久性和耐药性都有很大贡献。基质微环境的这种治疗保护作用反映了多种机制的综合作用,包括生长因子和细胞外基质成分。因此,尽管改善了阿来替尼反应,但抑制任何一种耐药机制都不足以完全克服基质的保护作用。关注持久者的共同附带敏感性提供了卓越的治疗益处,尤其是在使用具有旁观者效应的抗体-药物偶联物来限制治疗逃逸时。这些发现表明,基质介导的耐药性可能是残留和进展疾病的主要因素,并强调了一次只关注抑制单一耐药机制的局限性。
在线https://mpra.ub.uni-muenchen.de/119193/ mpra纸编号119193,发布于2023年11月28日15:45 UTC
易腐烂的食物供应链(PFSC)与许多担忧有关,包括粮食安全和质量挑战的增加,食物浪费和损失以及降低的盈利能力。鉴于此类项目的易腐烂性和有限的保质期,PFSC中的风险管理变得至关重要。尽管已经进行了几项关于易腐食品供应链的研究,但挑战和缓解措施尚未获得基本优先事项。因此,这项研究的目的是确定易腐烂的食品供应链系统(PFSC)中的挑战,并提供挑战的方法。对2005年至2020年之间的同行评审论文进行了完整的评估,是Scopus,Goggle Scholar,ScienceDirect和MDPI进行的。确定了八个关键挑战,并通过从相关公开的研究的角度探索来提供暗示的解释。为了解决确定的问题,作者提出了许多可能的风险缓解措施。
多阶段SC的MPC技术通常会根据三种不同的对照档案(集中式,分散和分布式)进行。前两个在(Alessandri等,2011),(Fu等,2014)中进行了讨论,(Fu等,2016),(Mestan等,2016),(Perea-Lopez等,2003)。集中式方法的主要限制是:数值综合性,计算成本,不愿共享信息。分散的方法没有这些弊端,但会导致性能丧失,因为控制剂彼此独立地决定控制措施。因此,兴趣最近集中在分布式MPC(DMPC)(Fu等,2019),(Fu等,2020)(Kohler等,2021)。上述论文并未考虑到库存系统中的不在项目的存在。另一方面,如果未考虑易腐商品的影响,则会观察到供应链系统的严重退化。易腐烂商品库存水平的集中式MPC已在(Hipolito等,2022; Lejarza and Baldea,2020)中进行了研究。这些后一篇论文假定了一个完全已知的恶化因素。然而,在实际情况的压倒性部分中,这种简化的信息无法满足(Chaudary等,2018)。
越来越复杂的学习方法(例如 boosting、bagging 和深度学习)使 ML 模型更加准确,但更难解释和说明,最终形成了黑盒机器学习模型。模型开发人员和用户通常都会在性能和可理解性之间做出权衡,尤其是在医学等高风险应用中。在本文中,我们提出了一种新颖的方法,用于在给定特定实例的情况下为通用机器学习模型的预测生成解释。该方法名为 AraucanaXAI,基于替代的局部拟合分类和回归树,用于提供通用机器学习模型预测的事后解释。所提出的 XAI 方法的优势包括对原始模型的卓越保真度、处理非线性决策边界的能力以及对分类和回归问题的本机支持。我们提供了 AraucanaXAI 方法的打包开源实现,并在 AI 的医疗应用中常见的多种不同设置中评估了其行为。这些问题包括模型预测与医生专家意见之间可能存在的分歧以及由于数据稀缺导致的预测可靠性低。
摘要 哺乳动物的智能行为和认知功能依赖于由多种兴奋性和抑制性细胞组成的皮质微电路,这些微电路形成跨越六层的森林状复合体。对皮质微电路的机制理解需要操纵和监测多个层及其之间的相互作用。然而,现有技术仅限于同时监测和刺激不同深度而不损害大量皮质组织。在这里,我们提出了一种相对简单且通用的方法,用于同时将光传送到任意两个皮质层。该方法使用一个微型光学探头,该探头由安装在单个轴上的两个微棱镜组成。我们通过三组实验展示了探头的多功能性:第一,通过光遗传学独立操纵两个不同的皮质层;第二,刺激一层同时监测另一层的活动;第三,在清醒小鼠中同时监测分布在两个不同皮质层中的丘脑轴突的活动。该探针设计简单、用途广泛、体积小、成本低,可广泛应用于解决重要的生物学问题。