摘要 人脑是自然界中终极的计算机器。创建能够模拟大脑工作方式并与大脑通信的类脑设备对于制造高效计算电路、监测早期疾病的发生以及跨脑机接口传输信息至关重要。在这种情况下,离子-电子信号的同时传导将特别令人感兴趣,因为离子传递器是人脑中信息传递的手段,而传统电子设备则利用电子或空穴。从这个角度来看,我们提出强关联氧化物(主要集中在钙钛矿镍酸盐)作为此目的的潜在候选材料。可逆地接受小离子并将离子信号转换为电信号的能力使钙钛矿镍酸盐成为神经形态计算和生物电应用的有力候选材料。我们将讨论钙钛矿镍酸盐中离子掺杂和电阻率调制之间相互作用的机制。我们还将介绍在神经形态计算和脑机接口应用中使用钙钛矿镍酸盐的案例研究。最后,我们指出了该领域的挑战并提出了我们的观点。我们希望钙钛矿镍酸盐中强电子相关性的利用将为未来的计算设备和脑机接口提供令人兴奋的新机会。
聚合物基质中纳入的铅卤化物钙钛矿纳米晶体(LHP-NC)已成为各种光子应用的有前途的材料。然而,由于单体转化率低,LHP-NCS负载限制以及在连接后保持NCS完整性方面,挑战持续到实现高质量的纳米复合材料,并限制了NCS完整性。通过NC引发的光诱导的电子传递 - 可逆的加法链转移(PET-RAFT)方法合成单个步骤中合成LHP-NCS/聚(甲基丙烯酸甲酯)纳米复合材料的新颖方案。poly-Merization启动由NCS表面介导的蓝光下介导的均可制造具有NCS载荷的同质纳米复合材料,即使在氧气的情况下,NCS载荷也可达高达7%w/w和≈90%的单体转换。此过程保留了NCS的光学质量并钝化了NCS表面缺陷,从而导致纳米复合材料表现出接近统一发光效果。通过放射性发光测量值表明,这种方法对产生高负载的纳米复合材料进行辐射检测的潜力验证了6000 pH MeV-1的光屈服值和效率寿命为490 PS的快速闪烁动态,显示了时间射频射频的前景。
The outcomes of computational study of electronic, magnetic and optical spectra for A 2 BX 6 (A = Rb; B = Tc, Pb, Pt, Sn, W, Ir, Ta, Sb, Te, Se, Mo, Mn, Ti, Zr and X = Cl, Br) materials have been proceeded utilizing Vanderbilt Ul- tra Soft Pseudo Potential (US-PP) process.RB 2 PBBR 6和RB 2 PBCL 6被发现是一个()半导体,能量差距分别为0.275和1.142 eV,使它们成为有前途的光伏材料。已证实了RB 2 BX 6(B = TC,W,W,IR,TA,MN,SB,MO)的材料的金属材料,显示了进行谱系的出席率。发现介电函数靠近紫外线区域(3.10-4.13 eV)。RB 2 BX 6的灭绝系数具有用于侵犯的能力。状态的带结构和密度确保磁性半导体的性质2 Mn(Cl,Br)6个钙钛矿。RB 2 MNCL 6和RB 2 MNB 6的总计算磁矩为3.00μβ。先进的自旋技术需要室温的铁磁性。目前的工作证实,溴和氯的双钙钛矿对光伏和光电设备具有极大的吸引力。
与当前的技术状态相比,美国能源部(DOE)提议向普渡大学提供联邦资金,以开发具有增强稳定性和电子特性的太阳能钙钛矿细胞。普渡大学将专注于将半导体配体(即与金属原子结合的分子)整合到细胞中。与技术的当前状态相比,配体将覆盖太阳能电池并提高设备内能量交换的能量转换效率和控制能量交换的方面,从而提高稳定性和能源效率。与项目相关的活动包括数据分析,计算机建模,概念设计工作,材料合成,表征,太阳能电池/微型模块制造和性能测试。
Ziming Chen 1 , ∗ , Robert L Z Hoye 2 , 3 , ∗ , Hin-Lap Yip 4 , 5 , ∗ , Nadesh Fiuza-Maneiro 6 , Iago López-Fernández 6 , Clara Otero-Martínez 6 , Lakshminarayana Polavarapu 6 , Navendu Mondal 1 , Alessandro Mirabelli 7 , Miguel Anaya 7 , Samuel D Stranks 7 , Hui Liu 8 , Guangyi Shi 8 , Zhengguo Xiao 8 , Nakyung Kim 9 , Yunna Kim 9 , Byungha Shin 9 , Jinquan Shi 10 , 11 , Mengxia Liu 10 , 11 , Qianpeng Zhang 12 , Zhiyong Fan 12 , James C Loy 13 , Lianfeng Zhao 14 , Barry P Rand 14 , 15 , Habibul Arfin 16 , Sajid Saikia 16 , Angshuman Nag 16 , Chen Zou 17 , Lih Y Lin 18 , Hengyang Xiang 19 , Haibo Zeng 19 , Denghui Liu 20 , Shi-Jian Su 20 , Chenhui Wang 21 , Haizheng Zhong 21 , Tong-Tong Xuan 22 , Rong-Jun Xie 22 , Chunxiong Bao 23 , Feng Gao 24 , Xiang Gao 25 , Chuanjiang Qin 25 , Young-Hoon Kim 26 , 27
拟议的奖励活动将包括外展,数据分析,建模,工程和设计,实验室研究和现场测试。外展活动将包括举办研讨会和招聘管道开发,以服务于社区中历史上边缘化的人群。立方(马萨诸塞州贝德福德),北卡罗来纳大学教堂山(Chapel Hill,北卡罗来纳州),国家可再生能源实验室(NREL; Golden,Co)和托莱多大学(俄亥俄州托莱多)将设计,开发和制造孔织布式薄膜薄片,太阳能细胞和模块。立方还将进行电气和材料表征,合成化学,数据分析,应力测试和屋顶现场测试。桑迪亚国家实验室(SNL;新墨西哥州阿尔伯克基)和NREL也将进行户外现场测试。SNL和NREL活动将作为商业化技术(PACT)研究小组的Perovskite PV加速器的一部分。
在钙钛矿光电探测器中产生的光电流(I pH)的频率响应是成像或电信应用中的关键问题,尽管文献中讨论了它。目前的工作是在第一次获得MAPBI 3(MA:甲基氨基)perovskite perovskite polycrystalline薄膜上产生的I pH的完整表达。条件电路用于在平方调节激发激励下的1 V处提取I pH,其灵敏度小于1 nW,线性动态范围LDR> 200 dB;它允许准确确定I pH的模块以及相位,这通常在光电探测器系统中不报告。频域分析表明,I pH可以通过位于低(10 kHz)和高(39-250 kHz)切割频率的两个分数极点进行建模。最佳的几何参数和激发功能是针对更广泛的响应发现的,从而在最高250 kHz的速率上获得了最佳设备,并在高达100 kHz的方形光波的繁殖中繁殖。这些结果代表了对MAPBI 3(或其他钙钛矿材料)进行电气分析的重要策略,以设计后电子阶段,优化设备的优化并确定其功绩。
[4-(3,6-二甲基-9H-咔唑-9基)丁基]膦酸 (Me-4PACz) 自组装分子 (SAM) 是解决倒置钙钛矿太阳能电池 (PSC) 中 NiO x 埋层界面问题的有效方法。但 Me-4PACz 端基 (咔唑核心) 不能强制钝化钙钛矿薄膜底部的缺陷。这里采用 Co-SAM 策略来修改 PSC 的埋层界面。Me-4PACz 掺杂氯化磷酰胆碱 (PC) 形成 Co-SAM 以提高单层覆盖率并降低漏电流。PC 中的磷酸基和氯离子 (Cl − ) 可以抑制 NiO x 表面缺陷。同时,PC 中的季铵离子和 Cl − 可以填充钙钛矿薄膜中的有机阳离子和卤素空位,使缺陷钝化。此外,Co-SAM 可以促进钙钛矿晶体的生长,协同解决埋藏缺陷问题,抑制非辐射复合,加速载流子传输,并减轻钙钛矿薄膜的残余应力。因此,Co-SAM 修饰的器件表现出高达 25.09% 的功率转换效率以及出色的器件稳定性,在单太阳照射下运行 1000 小时后,初始效率仍为 93%。这项工作展示了通过修饰 NiO x 上的 Co-SAM 来提高 PSC 性能和稳定性的新方法。
已知金属卤化物钙钛矿材料中的固有离子迁移可引起基于偏置应用时这些化合物的X和𝜸射线检测器中有害且高度不稳定的深色电流。深色电流随着时间的流逝而缓慢漂移被确定为满足工业需求的这些设备的主要缺点之一。因为暗电流建立可检测性极限,电流演化和最终生长可能会掩盖通过传入的X射线光子产生的光电流信号。检测器评估的相关信息是离子相关参数,例如离子浓度,离子迁移率和离子空间充电区,这些区域最终在检测器偏置的外部接触附近建立。使用单晶和微晶毫米 - 毫米 - 甲基铵铅溴化物,允许在μ离子≈10-7cm 2 v - 1 s-1 s-ion univers outiation in I In ion umiention in I I Onion In ion In I IM ion umigiation 之后,使用单晶和微晶毫米 - 甲基铵铅溴化物,然后使用单晶和微晶毫米 - 甲基铵铅溴化物进行。钙钛矿结晶度。之后,使用单晶和微晶毫米 - 甲基铵铅溴化物,然后使用单晶和微晶毫米 - 甲基铵铅溴化物进行。钙钛矿结晶度。。钙钛矿结晶度。