电力系统并解决电网瓶颈问题 • 由于有 3,000 吉瓦的可再生能源项目等待连接,电力系统升级对于支持清洁能源转型至关重要 • 风能和太阳能越来越多地融入电力系统,导致间歇性并降低系统惯性和稳定性 • 日立能源推出 Grid-enSure TM,这是一套完全集成的解决方案组合,可通过加强传输、管理频率变化和系统电压以及解决容量限制来稳定电力系统 巴黎/苏黎世,2024 年 8 月 27 日——日立能源呼吁立即采取行动扩大全球电网,减少连接瓶颈,并通过增加创新电力电子技术的部署来加速能源转型。目前有 3,000 吉瓦 (GW) 的可再生能源项目正在等待电网连接,相当于 2022 年新增太阳能光伏 (PV) 和风电装机容量的五倍。据估计,到 2040 年必须增加或更换 8000 万公里的电网,这就要求到 2030 年电网投资翻一番,达到每年 6000 亿美元以上(IEA)。可再生能源的日益普及、发电的分散化以及传统化石燃料行业的电气化和脱碳,为电力系统创造了充满挑战的运营环境。由于电力流更加多变、惯性和可预测性更低,需要越来越受控制的互连容量、绿色能源走廊以及直接为城市供电,以支持远程可持续发电。惯性对于确保整个电网的稳定性至关重要。为了解决这些问题并满足快速发展的电力系统的需求,日立能源今天在 CIGRE 2024 巴黎会议上推出了 Grid-enSure TM,这是一套完全集成的解决方案,有助于提高电网的灵活性、弹性和稳定性,从而加速可持续能源转型。Grid-enSure 为设计、规划和运营现有和未来的电力系统提供了一种全新的整体方法。该产品组合基于日立能源在电网开发和现代化方面的广泛咨询和咨询服务、电力电子和先进控制系统的内部垂直价值链,以及强大的电力系统领域和控制工程专业知识。日立能源的咨询服务还帮助客户了解未来的挑战以及应对这些挑战的相关 Grid-enSure 解决方案。这些解决方案结合了日立能源现有和未来的电力电子解决方案,例如高压直流 (HVDC)、静态补偿器 (STATCOM 和增强型 STATCOM)、静态变频器 (SFC)、中压直流 (MVDC)、储能解决方案和半导体技术。 “我们正处于能源转型的关键时刻。随着全球可再生能源的新增量达到前所未有的水平,日立能源业务部门电网集成总经理 Niklas Persson 表示:“我们必须重新考虑如何设计、规划和运营电力系统,以支持快速的能源转型。单靠传统的电力技术解决方案无法提供必要的速度和
[1] Takahiro Arima、Tomoko Okuma 和 Tatsuya Dewa。从技术文档中提取材料信息以探索新应用。自然语言处理协会第 29 届年会论文集,第 512-515 页,2023 年。[2] Annemarie Friedrich、Heike Adel、Federico Tomazic、Johannes Hingerl、Renou Benteau、Anika Marusczyk 和 Lukas Lange。SOFC-exp 语料库和神经方法在材料科学领域的信息提取。在计算语言学协会第 58 届年会论文集,第 1255-1268 页。ACL,2020 年。[3] Shu Huang 和 Jacqueline M. Cole。使用飞行数据提取器自动生成的电池材料数据库。科学数据,第 5 卷7,第1号,第2052-4463页,2020年。[4] Fabrizio Gilardi、Meysam Alizadeh和Maël Kubli。Chatgpt在文本注释任务中的表现优于众包工作者。美国国家科学院院刊,第120卷,第30期,第e2305016120页,2023年。[5] Tom Brown、Benjamin Mann、Nick Ryder、Melanie Subbiah、Jared D Kaplan、Prafulla Dhariwal、Arvind Neelakantan、Pranav Shyam、Girish Sastry、Amanda Askell、Sandhini Agarwal、Ariel Herbert-Voss、Gretchen Krueger、Tom Henighan、Rewon Child、Aditya Ramesh、Daniel Ziegler、 Jeffrey Wu、Clemens Winter、Chris Hesse、Mark Chen、Eric Sigler、Mateusz Litwin、Scott Gray、Benjamin Chess、Jack Clark、Christopher Berner、Sam McCandlish、Alec Radford、Ilya Sutskevser 和 Dario Amodei。语言模型是少样本学习器。载于《神经信息处理系统进展》,第 33 卷,第 1877-1901 页。Curran Associates, Inc.,2020 年。[6] Md Tahmid Rahman Laskar、M Saiful Bari、Mizanur Rahman、Md Amran Hossen Bhuiyan、Shafiq Joty 和 Jimmy Huang。在基准数据集上对 ChatGPT 进行系统研究和全面评估。载于《计算语言学协会研究结果:ACL 2023》,第 1877-1901 页。 431–469。ACL,2023 年 7 月。[7] Bart lomiej Koptyra、Anh Ngo、Lukasz Radli´nski 和 Jan Koco´n。Clarin-emo:使用人类注释和 chatgpt 训练情绪识别模型。在国际计算科学会议上,第 365–379 页。Springer,2023 年。[8] Taiki Watanabe、Akihiro Tamura、Takashi Ninomiya、Takuya Makino 和 Tomoya Iwakura。使用化合物释义进行化学命名实体识别的多任务学习。在 2019 年自然语言处理经验方法会议和第 9 届国际自然语言处理联合会议 (EMNLP-IJCNLP) 的论文集上,第 6244–6249 页。ACL,2019 年。[9] Amalie Trewartha、Nicholas Walker、Haoyan Huo、Sanghoon Lee、Kevin Cruse、John Dagdelen、Alexander Dunn、Kristin A. Persson、Gerbrand Ceder 和 Anubhav Jain。量化领域特定预训练在材料科学命名实体识别任务中的优势。Patterns,第 3 卷,第 4 期,第 100488 页,2022 年。[10] Gupta Tanishq、Zaki Mohd 和 NM Krishnan。Matscibert:用于文本挖掘的材料领域语言模型
政治经济学客座教授申请征集 慕尼黑工业大学 (TUM) 慕尼黑政治与公共政策学院希望在 2023/24 冬季学期(2023 年 10 月 1 日 - 2024 年 3 月 31 日)任命一位客座助理教授级别的客座教授,教授政治与技术硕士政治经济学专业核心课程(外加一门其他课程)。 申请者应拥有政治学、经济学或密切相关领域的博士学位。他们应提供国际或比较政治经济学学术专业知识的证据,以及用英语教授硕士课程的能力,该课程让学生了解政治和经济的相互作用,与 Persson & Tabellini 的政治经济学和政治学核心 PE 文本相称,从而让学生为在我们的政治与技术硕士课程的后续学期学习政治经济学高级研究生课程做好准备。 客座教授将教授他/她自己选择的第二门 PE 课程;特别欢迎开设应用经济学(或类似的定量方法)课程的教授。我们希望任命一位有积极研究计划的客座教授。我们特别感兴趣的是研究兴趣包括政治经济驱动因素或技术后果的学者,以便他们能够利用慕尼黑工业大学在自然科学和工程学方面的特殊优势。客座教授将驻扎在慕尼黑政治与公共政策学院(毗邻慕尼黑工业大学慕尼黑市中心校区)。他/她的工资将按照德国 W2 教授职位的工资标准支付,并辅以适度的旅行、研究援助或其他与教学和研究相关的费用。我们正在寻找一个学期(6 个月)的承诺来满足我们当前的教学需求,但如果需要,也可以任命一整年。慕尼黑工业大学是德国排名最高的研究型大学,致力于在活跃的多学科和跨学科科学界提供与世界领先研究型大学相当的优秀工作条件,包括协助客座教授的搬迁和融合。英语是我们硕士课程的主要教学语言,要求具备专业水平;德语基础知识有帮助,但不是必需的。申请应包括一封求职信,说明申请人教授政治经济学核心课程的资格,以及一份最新的简历,其中包括出版物清单(如果适用,请突出显示最重要的三份出版物)。我们强烈建议您附上一份研究陈述或类似的研究兴趣概述以及一份教学陈述,包括教学效果的证据。欢迎但不强制要求提供推荐信(联合或单独发送)。请将您的申请寄给社会科学与技术学院院长 Urs Gasser 教授。请尽快发送,抄送 appointments@sot.tum.de,并抄送 HfP 政治与技术硕士项目负责人 Tim Büthe 教授。Büthe 和 Gasser 教授也可以提前回答问题。申请将以滚动方式进行审核,直到职位被填补为止。在申请慕尼黑工业大学 (TUM) 的职位时,您需要提交个人信息。因此,我们要求您注意《通用数据保护条例》(GDPR) 第 13 条中规定的关于在您申请的背景下收集和处理个人数据的隐私政策(Datenschutzhinweise gemäß Art. 13 Datenschutz-Grundverordnung (DSGVO) zur Erhebung und Verarbeitung von personenbezogenen Daten im Rahmen Ihrer Bewerbung)。通过提交申请,您确认您已确认上述数据保护信息。
目前有大量文献研究政治经济互动(特别是政客的自利目标和群体冲突)对政策造成的各种制约(例如,参见 Persson 和 Tabellini,2000 年的出色概述)。这些文献表明,政治经济制约往往会导致政策扭曲,并研究了不同政治制度下的公共政策有何不同。公共财政理论在很大程度上没有考虑到这些政治经济制约,并得出了许多关于税收结构的重要规范性结论。当前一个有趣的研究领域是整合政治经济学文献的见解,以确定这些规范性结论中的哪些也具有积极内容。在本文中,我们朝这个方向迈出了一步,研究了公共财政理论中最著名的成果之一,即 Diamond 和 Mirrlees(1971 年、1976 年)的生产效率定理。在公共财政分析的标准(规范)框架中,戴蒙德和米尔利斯表明,即使税收菜单仅包括扭曲性工具,最佳税收制度也不应该涉及对(纯)中间产品的征税。这一结果的直觉很简单:对中间产品的征税将扭曲生产要素在中间产品和最终产品之间的分配,从而导致生产效率低下。通过减少中间产品税收并增加消费或收入税收,可以增加总剩余金额,即“经济蛋糕”。为了研究戴蒙德和米尔利斯关于中间产品税收的结果是否适用于包含政治经济扭曲的环境,我们基于我们之前的研究 Acemoglu、Golosov 和 Tsyvinski(2007a、b)构建了一个简单的无限期经济。该模型的政治经济维度很简单:在每个日期,财政和再分配决策都委托给一位政治家(或一组政治家)。政客是自私自利的,他们可以利用可用的税收手段来获取资源,以谋取自己的利益(例如,用于自己的消费)。公民控制政客,就像在标准的 Barro (1973) 和 Ferejohn (1986) 模型中一样,如果他们对政客的表现不满意,可以投票将其赶下台。经济的生产方面是 Acemoglu、Golosov 和 Tsyvinski (2007a,b) 考虑的新古典增长模型的延伸;家庭供应劳动力,但除了用于生产和储蓄的最终商品外,还有一个中间商品部门。中间商品部门使用资本和劳动力,而最终商品部门使用资本、劳动力和中间商品。我们研究政客和公民之间这种动态博弈的子博弈完美均衡 (SPE),重点关注最佳 SPE——最大化公民初始预期效用的子博弈完美均衡。我们的主要结果是,最佳 SPE 始终满足 Diamond-Mirrlees 生产效率条件,并且不涉及对中间产品的征税。尽管政治经济学确实引入了其他扭曲,并且我们的动态博弈中的最佳 SPE 中的劳动力供应和资本存量水平可能低于“有效”分配,但事实仍然如此。我们首先通过关注政治家可以使用无限税收工具的经济体来建立这一结果。然后,我们将这一结果推广到政治家只能使用线性税收的情况。本文中我们主要结果的直觉与经典 Diamond-Mirrlees 结果的直觉相似。1 政治经济学考虑——存在一个负责政策的自私政治家——需要为政治家支付租金。此外,
先知。博士。Ilya Okulov (Libniiz-Institute furary Designer Techno- login – IWT) Dr. Yasmine Sassa (Chalmers University or Technology) Amir Malakizadi (Chalmers University or Technology) Prof. Dr. Alexor Matic (Chalmers University or Technology) Dr. Sfjetlana Stecovic (Link University) Prof. Dr. Kevin M. Ryan (University or Limerick) Prof. Dr. Piter加尔加拉(联邦大学或圣卡洛斯)教授桑德拉·卡瓦略(Coimbra大学)麦地娜·沙姆苏耶娃(Madina Shamsuyeva)博士(汉诺威的利布尼兹大学)教授尼古拉斯·阿隆索·范特(Nicolas Alonso Vante)博士(Poitiers the Poitiers) AB)Wim Theelans博士(Katholic University Leuven)Aline Rogue博士(Bordaux大学)DAMENTAL TOURRET(IMDEA材料研究所)博士。Annable Broad(Katholic University Leuven)Gonzalo Priceto博士(西班牙研究委员会CSIC - 理工大学或Valencia UPV)Maria Vara del Arco博士(Madrid大学)Giovanni Perotto博士(Intirition Italo Italo Italo这Tecnologia(IIT)(IIT))。ThomasWeißgarber(Fraunhofer Instituteförferigigung偷窃和Ange Walls Material forshung)MaríaVallet-Regí博士(大学计算机或马德里)博士。AndrésFabánLasagni(技术大学)Regina Ciancio博士(地区科学园)博士。 Raquel Oro Calderon(维也纳技术大学)教授Laura M. Bartolo博士(芝加哥西北大学)Artur Erbe博士(Helmoltz- Zentrum drrest-Rossendorf E.V.))AndrésFabánLasagni(技术大学)Regina Ciancio博士(地区科学园)博士。Raquel Oro Calderon(维也纳技术大学)教授Laura M. Bartolo博士(芝加哥西北大学)Artur Erbe博士(Helmoltz- Zentrum drrest-Rossendorf E.V.))Raquel Oro Calderon(维也纳技术大学)教授Laura M. Bartolo博士(芝加哥西北大学)Artur Erbe博士(Helmoltz- Zentrum drrest-Rossendorf E.V.)Konda Gokuldoss Prahanth(Tallinn技术大学)教授WillumeitRömer(Helmholtz Center在这里)JoaquínRams博士(Helmholtz Center)教授JoaquínRams博士(Rey Rey Juan Carlos大学)Ivan Kaban博士(技术 - 以色列技术学院)AntonioJesúsSalinasSánchez博士(Madrid大学) Österlund(Uppsala University)博士。 洛伦佐·莫罗尼(Lorenzo Moroni)教授(马斯特里赫特大学)教授罗伯特·伍德沃德(Robert Woodward)博士(维也纳大学)Pearl Agyakwa博士(诺丁汉大学) Kiran Gulia(Wolverhampton大学)Masiar Sistani博士(维也纳技术大学)Konda Gokuldoss Prahanth(Tallinn技术大学)教授WillumeitRömer(Helmholtz Center在这里)JoaquínRams博士(Helmholtz Center)教授JoaquínRams博士(Rey Rey Juan Carlos大学)Ivan Kaban博士(技术 - 以色列技术学院)AntonioJesúsSalinasSánchez博士(Madrid大学) Österlund(Uppsala University)博士。洛伦佐·莫罗尼(Lorenzo Moroni)教授(马斯特里赫特大学)教授罗伯特·伍德沃德(Robert Woodward)博士(维也纳大学)Pearl Agyakwa博士(诺丁汉大学) Kiran Gulia(Wolverhampton大学)Masiar Sistani博士(维也纳技术大学)