摘要 发展中国家(如秘鲁)的大多数农村社区尚未接入电网。利用可用的可再生资源(如风能和太阳能)和柴油发动机的混合能源生产被视为这些地区电气化的一种经济可行且环境友好的替代方案。由于缺乏针对秘鲁离网电气化混合系统(光伏-风能-柴油)的技术经济分析的全面调查,本研究重点是确定这些系统在秘鲁偏远村庄的最佳配置。因此,我们选定了三个无法接入电网的小社区(Campo serio、El potrero 和 Silicucho),它们位于秘鲁的不同气候区,作为案例研究。研究考虑了七种不同的配置,包括单一组件系统(太阳能、风能和柴油)和混合系统。在考虑社区的气象数据和负荷特性以及柴油价格和零部件成本的同时,HOMER 软件用于确定系统的最佳规模 [从而实现最低净现值 (NPC)],同时考虑不同的情景。然后,考虑其他最先进的经济指标 [初始资本成本、年度总运营成本和能源成本 (COE)]、发电分数和由此产生的二氧化碳排放量,比较所获得的配置。所得结果表明,对于所有被调查的社区,混合太阳能-风能-柴油系统是最经济可行的方案。考虑后一种情形,获得的最佳配置导致 Campo serio 的 NPC 为 227,335 美元(COE:0.478 美元/千瓦时),El potrero 的 NPC 为 183,851 美元(COE:0.460 美元/千瓦时),Silicucho 的 NPC 为 146,583 美元(COE:0.504 美元/千瓦时)。此外,采用最佳配置,Campo serio 和 Silicucho 的可再生部分(相对于总发电量)为 94%,而 El potrero 的可再生部分为 97%。此外,对于 Campo serio,获得的最佳系统的 CO 2 排放量确定为纯柴油机组的 6.1%,而后者比率确定为 El potrero 的 2.7% 和 Silicucho 的 9.9%。本文获得并提出的最佳配置可作为针对所考虑的社区和具有相似特征(人口和气候条件)的其他村庄设计电气化系统(以最小化成本)的指南。
imerg低估了观察到的数据25.1%(Arias等,2022)。Zubieta等。(2017)发现,在Chazuta(Andean-Amazon盆地)的Huallaga河子巴桑中,IMERG,TMPA/3B42/V7和TMPA/RT降水产物分别低估了观察到的降雨量,分别为30.7、28.2,28.2和26.2%。Espinoza等。(2015)和查韦斯和高桥(Chavez and Takahashi)(2017)在中央安第斯山脉(Andes)发现,TRMM/PR 2A25和2A23卫星沉淀产品低估了观察到的降水量40%和50%
全基因组测序 (WGS) 是全球抗击结核病 (TB) 的一个有前途的工具。本研究的目的是评估在秘鲁耐多药结核病热点地区常规使用 WGS 检测耐药标志物和传播簇的情况。为此,前瞻性地选择了来自利马和卡亚俄的 140 种耐药结核分枝杆菌菌株,并同时通过常规(GenoType MTBDR sl 和 BACTEC MGIT)和 WGS 工作流程进行处理。根据世界卫生组织突变目录确定耐药性。计算了利福平、异烟肼、吡嗪酰胺、莫西沙星、左氧氟沙星、阿米卡星和卷曲霉素的 WGS 和 BACTEC 结果之间的一致性。使用不同的单核苷酸多态性差异截止值确定传播簇。 100% (140/140) 的菌株对 13 种抗结核药物具有有效的 WGS 结果。然而,最终确定的表型 BACTEC MGIT 结果的可用性因药物而异,七种比较药物的无效结果为 10-17%。获得全套药物 WGS 结果的中位时间为 11.5 天,而常规工作流程为 28.6-52.6 天。比较药物的 WGS 和 BACTEC MGIT 的总体分类一致性为 96.5%。除莫西沙星外,Kappa 指数良好 (0.65 k 1.00),但所有病例的敏感性和特异性值都很高。 97.9% (137/140) 的菌株仅具有一个亚谱系(134 株属于“谱系 4”,3 株属于“谱系 2”),2.1% (3/ 140) 为混合菌株,呈现两个不同的亚谱系。5、10 和 12 个 SNP 截止值的聚类率分别为 3.6% (5/ 140)、17.9% (25/140) 和 22.1% (31/140)。综上所述,常规 WGS 对检测对当前主要抗结核药物的耐药性具有很高的诊断准确性,可通过一次分析获得结果,并有助于迅速切断秘鲁耐药结核病的传播链。
我们是该国最多元化的发电公司之一,我们通过 16 条输电线路推动能源增长,这些输电线路遍布全国,长度超过 476 公里,在我们的发电厂和我们连接的 SEIN 的不同变电站之间输送电力。
● 需要在必须保护的生态环境中优化可可种植。据(Bessombes 2015)称,秘鲁是世界第二大可可出口国。
。CC-BY 4.0 国际许可 它是永久可用的。 是作者/资助者,已授予 medRxiv 许可以显示预印本(未经同行评审认证)预印本 此版本的版权所有者于 2025 年 1 月 28 日发布。;https://doi.org/10.1101/2025.01.26.25321156 doi:medRxiv 预印本
1 秘鲁国家农业创新研究所(INIA)实验站监督和监测局迦南农业实验站,阿亚库乔 05002;邮箱:tati.condori89@gmail.com (TC); sumi222015@gmail.com(南非); josevelasquez_m@hotmail.com (JV) 2 多诺索农业实验站,农业技术发展局,国家农业创新研究所(INIA),利马 15200,秘鲁; lucero.26.lhs@gmail.com 3 秘鲁圣克里斯托瓦尔德瓦曼加国立大学(UNSCH)农学院、农业科学学院,阿亚库乔 05001; cayo.garciablasquez@unsch.edu.pe 4 普卡尔帕农业实验站,实验站监督和监测部,国家农业创新研究所(INIA),乌卡亚利 25002,秘鲁; cesar.padillacastro@outlook.com 5 国家农业创新研究所(INIA)农业实验站监督和监测部门,Av. La Molina 1981,利马 15024,秘鲁 6 南方科学大学(UCSUR)环境科学学院,利马 15067,秘鲁 * 通讯地址:investigacion_labsaf@inia.gob.pe
该研究的主要目的是确定秘鲁、拉丁美洲和经合组织国家非正规经济的规模,以及评估非正规经济对税收和经济增长的影响。为了实现该目标,该方法是通过 MIMIC 模型来实现的。主要结果显示,秘鲁非正规经济规模占GDP平均比重为37.4%,拉美国家为34%,经合组织国家为19.83%;这略低于拉丁美洲平均水平的一半。
1重返发展,强大的GIC,国家创新研究所是Nug(NIA),AV。1981年莫利纳,利马15024,秘鲁; genomica@inia.gob.or(R.E.); andovals@gmail.com(t.p。); auristel.reynos@gmail.com(A.R.)2 Agronoma的教职员工,国家普遍农业(UNALM),AV。Molina S/N,Lima 15024,秘鲁; 3农业学院和农业社会,来自亚马逊门多萨(UNTRM)的全国普遍调查形象,Cl。URCO 342,01001,秘鲁4参与教师IS,全国通用世界(UNAB),AV。威尔士376,利马15169,秘鲁; garone@un.edu.or。); Carlos.A);电话: +51-9556-48901(R.C.); +51-9862-88181(C.I.A。)†另一个组装造成了这项工作。
BBIBP-CORV疫苗有效预防秘鲁2021年秘鲁的卫生保健危机感染和死亡,哈维尔(Javier)隶属关系:美国国家公共卫生中心国家公共卫生中心,利马国家公共卫生中心,秘鲁地址:JR。 div>Capac Yupanqui 1400,耶稣玛丽亚。 div>利马,秘鲁Soto-Becerra,Percy Affilition1:大陆大学,华纳哥,秘鲁地址1:AV SAN CARLOS 1980,HUANCAYO 12000 ARFILITION2:健康与研究技术评估 div>>利马。 div>秘鲁Escobar-Agreda,Stefan隶属关系:秘鲁利马国家公共卫生中心国家卫生研究院(INS),地址:JR。 div>Capac Yupanqui 1400,耶稣玛丽亚。 div>利马,秘鲁·费尔南德斯 - 纳瓦罗,曼努埃尔大学:国家卫生研究院(INS),国家公共卫生中心,利马,秘鲁地址:JR。 div>Capac Yupanqui 1400,耶稣玛丽亚。 div>利马,秘鲁莫斯科索 - 波拉斯,米格尔隶属关系:国家卫生研究院(INS),国家职业健康中心和卫生环境保护,利马,秘鲁,地址为阿马波拉斯350。 div>利马。 div>秘鲁·索拉里(Peru Solari),莱利·科雷斯特(Lyely Correspreding)作者隶属关系:国家卫生研究院(INS),国家公共卫生中心,利马,秘鲁,地址:JR。 div>Capac Yupanqui 1400,耶稣玛丽亚。 div>利马,秘鲁。 div>邮政代码:15073电子邮件:lsolari@ins.gob.pe电话:+51 999 128 241 Mayta-Tristán,珀西隶属关系:南科学大学,秘鲁利马研究,发展与创新总局。 div>地址:秘鲁利马的古代Panamericana Sur KM19