除了有关预备役人员的档案外,《Esprit Défense》第三期还为您提供了与海军上将罗兰 (Rolland) 的精彩访谈。共和国总统办公厅主任,他向您介绍了这一对于我们的军队和机构的运作至关重要的结构。您还可以发现一份关于由法国和八个欧洲国家领导的维护霍尔木兹海峡航行自由的“阿格诺尔行动”的报告。最后,公民预备役军人托马斯·佩斯凯(Thomas Pesquet)提供了对军队的“另一种视角”。他特别向飞行员们表示热烈的敬意,他说,他们“为了共同利益,冒着生命危险”。向全体现役和预备役军人表示敬意。
娜塔莉·拉索 1.2 、萨米·阿马里 1.2 、艾米莉·舒泽努 3 、雨果·戈尔泰斯 4 、保罗·赫伦特 5 、马修·德维尔德 4 、萨默·索利曼 4 、奥利维尔·梅里尼亚克 2 , 玛丽-波琳·塔拉巴尔 4 , 让-菲利普·拉马克 1,2 , 雷米·杜波伊斯 5 , 尼古拉斯·卢瓦索 5 , 保罗·特里谢莱尔 5 , 艾蒂安·本杰巴尔 5 , 加布里埃尔·加西亚 1 , 科琳巴雷吉耶 1,2 , 曼苏里亚梅拉德 6 , Annabelle Stoclin 7 、Simon Jegou 5 、Franck Griscelli 8 、Nicolas Tetelboum 1 、Yingping Li 2,3 、Sagar Verma 3 、Matthieu Terris 3 、Tasnim Dardouri 3 、 Kavya Gupta 3 分、Ana Neacsu 3 分、Frank Chemouni 7 分、Meriem Sefta 5 分、Paul Jehanno 5 分、Imad Bousaid 9 分、Yannick Boursin 9 分、Emmanuel Planchet 9 分、Mikael Azoulay 9 ,乔斯林·达查里 5 ,法比安·布鲁波特 5 、阿德里安·冈萨雷斯 5 、奥利维尔·德阿纳 5 、让-巴蒂斯特·希拉蒂 5 、凯瑟琳·舒特 5 、让-克里斯托夫·佩斯凯 3 、雨果·塔尔博特 3 、艾洛迪·普罗尼耶 5 、吉尔斯·温里布5、托马斯·克洛泽尔(Thomas Clozel)5、法布里斯·巴莱西(Fabrice Barlesi)6、玛丽-弗朗斯·贝林(Marie-France Bellin)2.4、迈克尔·G·B·布鲁姆(Michael G. B. Blum)5*。
照片版权:第 2 页:空中客车防务与航天公司集成装配室(位于 Astrolabe 洁净室,欧洲最大的洁净室)-© Airbus/D.Marques 卫星有效载荷集成©Thales Alenia Space/Laurent Barranco。纳米卫星照片 CNES/Hemeria:© CNES/ill./DUCROS David, 2018。第 3 页:© CNES/ill./Ducros David, 2013 ©Airbus - Pléiades Neo。艾格莫尔湾© Copernicus Sentinel Data /,2017年。测试:© Airbus/T Emsting - 照片由 B. Ziegler 拍摄。卫星有效载荷集成室©Thales Aenia Space/ImagIN small。第 4 页:Thomas Pesquet - © CNES / GRIMAULT Emmanuel,2019 年。2020 年火星任务的毅力号探测器插图 - ©CNES/VR2Planets,2021 年蒙彼利埃大学航天中心。空中客车防务与航天:测试和试验。太空城。 ©Kineis。量子计算机:©IBM Research © ESA/Pierre Carril © CNES/OTCE/2021 - © CNES // iLL./DUCROS David, 2018 - © CNES/LOUVEL Stéphane, 2016
本文提供了对Combettes和Pesquet [4]引起的tseng型拆分算法的定量分析,用于同时解决原始问题以及双包容性问题,两者都使用非常通用的复合操作员进行配制,均使用非常普遍的复合操作员,涉及涉及单线性组合和平行式和平行的单位元素的混合物。具体而言,我们表明,如果所涉及的操作员的个别总和是统一的单调,那么对于由算法产生的序列的个体组件的强收敛来说,具有简单的同时收敛速度,该算法分别与原始和双重包容性问题相对应(仅在某些方面),仅在某些方面依赖(正常的),这是在某些方面的依赖(正常的)。关于启动参数,该方法中涉及的误差项和模量的融合率见证了操作员的均匀单调性(在[8]的意义上)(参见定理4.7)。没有任何均匀的单调性假设,算法会弱收敛(如[4]所示),但即使在有限的尺寸情况下,通常也没有可计算的收敛速率,因为人们可以使用Specker引起的可计算理论的结果来显示[15](另请参见[10,13]中的讨论)。在这种情况下,下一个最好的事情是构建有效的序列(x n)的效率所谓的亚愿速率,即在表达式1
尽管托马斯·佩斯凯于 4 月 22 日作为阿尔法任务的一部分发射升空,但人类面临的最大挑战之一仍然比国际空间站更远,距离地球 40 万公里:建立月球基地。但是在能够长期定居月球以开发其资源或为未来更远的探索任务提供后勤支持之前,必须进行探索工作。使用自主机器人系统可以从太空绘制危险或难以到达区域的地图,然后最终部署太空港或人类居住地等基础设施。面对这一探索挑战,图卢兹 ISAE-SUPAERO 的空间先进概念实验室 (SaCLaB) 和该学院的一个学生团队正在开发协作探测车和无人机 (CoRoDro) 项目,以研究空间机器人系统的导航和自主操作。这项科学研究是欧洲航天局 (ESA) 支持的 IGLUNA* 2021 计划中在 8 个不同国家选出的 12 个大学技术项目之一。CoRoDro 的概念是开发无人机和探测车之间的交互。具体来说,无人机定位并绘制其环境,并将其传输给探测车,以便后者对其进行分析并选择最相关的点进行移动和进行科学实验。借助无人机的制图,探测车能够选择最短路径并确定可能的障碍物,从而缩短每次探索任务的时间。该项目的目标是了解在多大程度上可以信任机器人的工作,让它们完全自主地移动和做出决策,并确定在多大程度上人类可以做出决策,尤其是对不可预见的事件做出反应。从月球设施的角度来看,机器人将进行干预以支持关键活动。 CoRoDro 项目允许获取知识并在真实尺寸上测试有关未来空间站的服务、月球资源的开发或对机组人员和机器人之间在关键和危险活动中的协作的分析的多种理论。联系方式:leila.c@oxygen-rp.com