商业战略和人力资源管理对组织绩效的影响。来自德雷达瓦政府公共服务组织的证据 Girmay Aklilu 商务与经济学院,德雷达瓦大学,埃塞俄比亚 摘要:本文旨在评估在德雷达瓦政府的背景下将人力资源管理实践与商业战略相结合的实践及其对组织绩效的影响。通过对公共部门组织管理部门的 102 个组织进行问卷调查收集数据,并使用“描述性统计和相关与回归”方法进行分析。结果分析表明,该地区有一个源自国家增长和发展计划的总体战略计划。还有战略人力资源计划。但从政府战略计划的目标和目的中得出人力资源计划的做法并不常见。人力资源管理实践(员工选拔、薪酬、绩效评估和培训与发展实践)与组织绩效存在因果关系,并受人力资源实践协调的影响。因此,本研究对学术界和实践者的贡献在于,与商业战略相关的人力资源管理实践将影响组织绩效,而组织绩效可以用平衡计分卡中的要素来衡量,即客户满意度、改进的财务管理系统、内部成长以及学习与发展。 关键词:平衡计分卡、人力资源管理、战略、协调、绩效。 DOI:10.7176/JRDM/62-04 出版日期:2020 年 1 月 31 日 1. 简介 1.1. 研究背景 有效的组织越来越意识到,在影响绩效的各种因素中,人的因素是最关键的。无论组织规模或性质如何,它所开展的活动和运营环境都取决于员工的决策和行为。组织中各级管理人员越来越意识到,竞争优势的关键来源不是拥有最本土化的产品或服务设计、最佳营销策略、最先进的技术或最精明的财务管理,而是拥有吸引、激励和管理组织人力资源的适当系统﴾Mello,2009 ׃4 ﴿ 采用战略性人力资源管理 (HRM) 方法需要抛弃人事管理的思维模式和实践,更多地关注战略问题而不是运营或职能问题。战略人力资源管理 (SHRM) 需要将管理人员的职能作为组织中最重要的优先事项,并在公司战略框架内整合所有人力资源系统。SHRM 意识到人是组织成败的关键,因为所有关于财务、营销、运营或技术的决策都是由组织的人力资源部门做出的。在技术动态变化和竞争激烈的时代,组织的人员维度被发现是一种独特的能力,因为组织的其他维度可能代表一种能力或可能是竞争优势的来源,如果没有研发努力,竞争对手很容易模仿,但组织的人力资源方面代表着可持续的竞争优势,因为人力资源对竞争对手来说是看不见的、不可替代的,也有能力为客户和利益相关者创造价值。因此,现代企业需要人力资源管理来帮助他们实现长期增长和可持续发展。本研究侧重于考察管理中的战略人力资源实践,即是否存在与业务战略相结合的正式人力资源战略、人力资源管理与业务战略之间的协调程度或关系、不同管理职位在人力资源战略的制定和实施中的作用以及战略协调实践对组织整体绩效的影响。1.2。问题陈述 长期以来,人力资本一直被认为是大多数组织的关键资源(Pfeffer,1994 年)。人力资源管理是管理者整合个人行为以使其行为与组织利益相一致的主要机制之一(Goold 和 Quinn,1990 年)。企业领导者现在认识到,战略人力资源职能对最终结果有直接影响,必须与企业目标保持一致。学者和从业者都同意,随着竞争的加剧,人才或许是唯一真正可持续的资源。不同管理职位在人力资源战略的制定和实施中的作用,以及战略协调实践对组织整体绩效的影响。1.2.问题陈述人力资本长期以来被认为是大多数组织的关键资源(Pfeffer,1994)。人力资源管理是管理者整合个人行为以使其行为与组织利益一致的主要机制之一(Goold and Quinn,1990)。企业领导者现在认识到,战略人力资源职能对最终结果有直接影响,必须与企业目标保持一致。学者和从业者都同意,随着竞争的加剧,人也许是唯一真正可持续的不同管理职位在人力资源战略的制定和实施中的作用,以及战略协调实践对组织整体绩效的影响。1.2.问题陈述人力资本长期以来被认为是大多数组织的关键资源(Pfeffer,1994)。人力资源管理是管理者整合个人行为以使其行为与组织利益一致的主要机制之一(Goold and Quinn,1990)。企业领导者现在认识到,战略人力资源职能对最终结果有直接影响,必须与企业目标保持一致。学者和从业者都同意,随着竞争的加剧,人也许是唯一真正可持续的
每个器官有两个相邻的容器模型,容器之间由毛细管(壁)膜隔开。这是一个集中系统模型,不考虑膜以外的质量传递阻力。该模型的第一个改进是克罗格圆柱体。[4] 毛细血管簇形成毛细管网络。研究人员使用细胞模型,将单位或细胞(在本例中为毛细管)与集合隔离开来。克罗格圆柱体 [4] 表示细胞和分布式系统,可提供更多信息,例如溶质渗透到血管外组织的程度。鉴于克罗格绘制的包括毛细血管在内的血管草图[4],他只能使用圆柱形模型(如图1所示)。此后,出现了其他更像网络的草图,但克罗格圆柱体仍可用作细胞。值得注意的是,在流经填料床时,Happel 的细胞模型 [5 ] 对于组成填料床的每个球体都非常适用,适用于整个系统。Pfeffer 将这种流体流动模型扩展到质量传递。[6 ] 与 Happel 的模型 [4 ] 类似,其中添加单元来表示填料床,假设 Krogh 圆柱体平行添加以组成器官。Brinkman 方程用于求解血管外组织中的流动。由于这些方程的线性,因此可以获得解析解,从而避免使用数值方法求解它们,因为这些方程非常僵硬。[7 ] 比率 ffiffiffi kp = L 非常小,其中 k 是血管外组织的渗透率,L 是毛细管的长度。已有许多关于 Krogh 圆柱体中的质量传递研究报告。 [8-14]然而,研究人员几乎从未考虑过血管外组织中流动的影响,也从未考虑过流场和浓度场的二维性。此前,我们曾考虑过 Krogh 圆柱中的流动,[7]其中血管外组织中的流动使用 Brinkman 方程建模,该方程允许流线弯曲和/或流动在横向具有空间变化。然而,我们几乎没有发现任何流动从小动脉末端离开毛细血管,又从小静脉末端返回,就像 Guyton 和 Hall 所建议的那样。[15]原因是图 1 中的血浆有两条平行的路径
T2DM,因为它们在调节血糖水平方面具有显著的功效,而且不会增加低血糖发作或体重增加的风险( Drucker 和 Nauck,2006;Nauck,2016)。此外,各种大规模心血管结果试验 (CVOT) 的良好结果表明,GLP-1RA 可以减轻心血管风险较高的 T2DM 患者发生重大不良心血管事件 (MACE) 的风险( Marso et al., 2016a;Marso et al., 2016b;Hernandez et al., 2018;Pfeffer et al., 2015;Holman et al., 2017;Husain et al., 2019;Gerstein et al., 2019)。由于这些有利的特性,GLP-1RA 已获得权威指南的认可( Marx 等人,2023 年;2024 年),成为 2 型糖尿病患者的重要治疗选择,尤其是那些已有动脉粥样硬化性心血管疾病或心血管风险较高的患者。然而,多年来,人们一直担心 GLP-1 RA 对胰腺的影响。根据观察数据,2011 年的一份报告强调,使用肠促胰岛素治疗的患者患胰腺炎和胰腺癌的风险增加( Elashoff 等人,2011 年),促使美国食品药品监督管理局 (FDA) 就 GLP-1 RA 对胰腺的安全性发出警告( Administration,2013 年)。病例报告回顾(Franks 等人,2012 年)进一步加剧了人们对 GLP-1RA 对胰腺的潜在不良影响的担忧,导致胰腺酶升高和 AP。一项大型随机对照试验的荟萃分析研究了基于肠促胰岛素的疗法与 AP 之间的关联,显示与传统疗法相比,使用这些药物时发生 AP 的可能性高 82%(95% CI,1.17 – 2.82)(Roshanov 和 Dennis,2015 年)。虽然最近发表的几项 CVOT 荟萃分析表明,GLP-1RA 与胰腺炎之间没有这种关联(Singh 等人,2020 年;Cao 等人,2020 年)。尽管如此,此类研究也存在重大缺陷,包括平均随访时间相对较短(RCT 中不到 2 年)、患者队列选择不当以及样本量有限。在本研究中,我们回顾了已发表的文献,并分析了美国食品药品管理局不良事件报告系统 (FAERS) 数据,以调查 GLP-1 RA 治疗中 AP 的发生率。我们的目标是提供 GLP-1 RA 诱发的 AP 的全面临床描述,并确定现实环境中 AP 和 GLP-1 RA 之间存在安全信号。
#1.1 173印度太平洋珊瑚礁积聚和生态社区结构Ramos,Riovie的时空趋势;摩根,凯尔#1.2 211加勒比珊瑚礁群岛丈夫的形成;东,霍莉; gulliver,波琳; Hocking,Emma#1.3 238全新世百慕大礁的内部结构:高纬度珊瑚礁的发展替代方案?islas-dominguez,爱德华多;吉斯勒(Eberhard); Hudson,J。Harold#1.4 268热带气候变异性以及在Orbicella和Siderastrea珊瑚骨骼中记录的环境压力源的影响,伯利兹,中美洲Diers,Diana; Raddatz,Jacek; Gischler,Eberhard#1.5 534始新世珊瑚礁珊瑚(Astreopora)Mono,Phyllis的钙化特征; Regina的Mertz-Kraus;路透社,马库斯; Kołodziej,Bogusław; Stefanskyi,Vadim L。; Methner,Katharina A。; Brachert,Thomas C.#1.6 611研究生物地层学的进步:分析RIF地区的白垩纪有孔虫,以进行古地理分析IMAM,ADIL; Yousfi,穆罕默德·扎卡里亚(Mohamed Zakaria); budad,larbi; Soukaina Jaydawi#1.7 619对多种压力源的珊瑚生长反应:印度尼西亚Belitung锡岛的沉积物径流和Heatwaves。渡边,塔卡基伊(Takaakii K。); Pfeffer,Miriam; Nurhidayati,Ayu Utmi; Garbe-Schönberg,Dieter;弗里克,丹尼尔·A。 Cahyarini,Sri Yudawati#1.8 642在北苏拉威岛(印度尼西亚)的曼卡岛硬质和柔软的珊瑚色礁石地块的鱼类社区。英寸,劳拉;凯特(Inman); Ompi,Medy;一年,罗伯特;贝亚胡达(Yehuda); Schupp,Peter J。; Reverter,Miriam#1.9 850 Cor Reef Food Web和Energy Fluxes for Global Change Paul Costasec,Emma Lucile的高脆弱性; Nina,Schiettekatte;莫拉伊,雷纳托;凯西,约旦;布兰德尔,西蒙; Delecambre,Zoe;地板,塞尔吉奥;艾伦(Alan)弗里德兰德(Friedlander); Nunes,卢卡斯;丹斯,布鲁诺;帕拉维奇尼(Parravicini),瓦莱里亚诺(Valeriano)#1.10 851海洋变暖和海洋酸化对Blanca及其相关的微生物组figuerola的长期影响;加拉布(Joaquim) Pressà-Domènech,马克; Capdevila,Pol; Mirasole,爱丽丝;巴索尔,波尔;德尔·坎波(Del Campo),哈维尔(Javier); Teixidó,Núria
[3] Krzysztof Fiok、Farzad V. Farahani、Waldemar Karwowski 和 Tareq Ahram。2022 年。可解释的人工智能在教育和培训中的应用。《国防建模与仿真杂志》19,2(2022 年),133–144。https://doi.org/10.1177/15485129211028651 arXiv:https://doi.org/10.1177/15485129211028651 [4] Carlos Enrique George-Reyes、Francisco Javier Rocha Estrada 和 Leonardo David Glasserman-Morales。2021 年。将数字素养与计算思维交织在一起。在第九届促进多元文化的技术生态系统国际会议(TEEM'21)中,Marc Alier 和 David Fonseca(编辑)。ACM,美国纽约,第 13-17 页。https://doi.org/10.1145/3486011.3486412 [5] Paul Gilster。1997 年。数字素养。Wiley,纽约。[6] 顾继发和张玲玲。2014 年。数据、DIKW、大数据和数据科学。Procedia Computer Science 31(2014),814-821。https://doi.org/10.1016/j。 procs.2014.05.332 [7] Enkelejda Kasneci、Kathrin Seßler、Stefan Küchemann、Maria Bannert、Daryna Dementieva、Frank Fischer、Urs Gasser、Georg Groh、Stephan Günnemann、Eyke Hüllermeier、Stephan Krusche、Gitta Kutyniok、Tilman Michaeli、Claudia Nerdel、Jürgen Pfeffer、Oleksandra Poquet、Michael Sailer、Albrecht Schmidt、Tina Seidel、Matthias Stadler、Jochen Weller、Jochen Kuhn 和 Gjergji Kasneci。2023 年。ChatGPT 永垂不朽?大型语言模型为教育带来的机遇与挑战。https://doi.org/10.35542/osf.io/5er8f [8] Duri Long 和 Brian Magerko。 2020. 什么是人工智能素养?能力和设计注意事项。在 2020 年 CHI 计算机系统人为因素会议论文集上,Regina Bernhaupt、Florian 'Floyd' Mueller、David Verweij、Josh Andres、Joanna McGrenere、Andy Cockburn、Ignacio Avellino、Alix Goguey、Pernille Bjørn、Shengdong Zhao、Briane Paul Samson 和 Rafal Kocielnik(编辑)。ACM,纽约,纽约州,美国,1-16。https://doi.org/10.1145/3313831.3376727 [9] Carolyn R. Pool。1997. 新数字素养:与 Paul Gilster 的对话。教育领导力 55(1997 年),6-11。 [10] Chantel Ridsdale、James Rothwell、Hossam Ali-Hassan、Michael Bliemel、Dean Irvine、Daniel Kelley、Stan Matwin、Michael Smit 和 Bradley Wuetherick。2016 年。数据素养:文献的多学科综合。第十九届 SAP 美洲学术会议。11-14。[11] Matti Tedre、Peter Denning 和 Tapani Toivonen。2021 年。CT 2.0。第 21 届 Koli Calling 国际计算教育研究会议,Otto Seppälä 和 Andrew Petersen(编辑)。ACM,美国纽约州纽约,1-8。https://doi.org/10.1145/3488042.3488053 [12] Bernie Trilling 和 Charles Fadel。 2009. 21 世纪技能:我们时代的终身学习。约翰·威利父子公司。
MST / Czarske Lab主席的亲爱的朋友和合作伙伴,测量和传感器系统(MST) / Czarske Lab的主席正在庆祝其成立19周年。我们回顾了一年。对我今年的活动报告是一种极大的荣幸和荣幸。获得了几个新项目。也正在进行一个国际项目。特别是LarsBüttner等人开发的激光轮廓传感器对速度和温度测量的商业成功。转移是与尤利希(Jülich)ILA R&D GMBH公司合作进行的。这项在市场上取得成功的创新获得了贝尔瑟德·莱宾创新奖。CZARSKE实验室的学生和员工今年获得了10多个奖项。总共获得了110多个荣誉,奖品和奖项,其中包括最近获得Katrin Philip 10,000欧元的Berta Benz奖。令人高兴的是,从校友(不来梅的安德烈亚斯·费舍尔)收到了ERC。2017年,日本皇帝在东京开设了国会大会ICO-24,德累斯顿被选为下届世界大会。经过3年的重密集式准备,在Optica,Spie,IEEE,EOS,DGAO,Zeiss,Tu Dresden,ICO,Owls和其他合作伙伴的支持下,由于不幸的是,国会无法举行国会。它被推迟了一年,然后在ICO大会关于数字格式的大会进行了深入的讨论后再次推迟。我们感谢所有支持者和工作人员,尤其是Nektarios Koukourakis和Lars Buettner。2022年,面对面的世界大会ICO-25-owls-16在国际意外的领域和质量中取得了巨大的成功。来自55个国家(非洲,美国,亚洲,澳大利亚,惊人的欧洲)的55个国家的与会者以及具有3个诺贝尔奖获得者的非凡质量密度使我们激动。此外,应分别感谢迈克尔·普菲弗(Michael Pfeffer)和沃尔夫冈·奥斯滕(Wolfgang Osten)对现场组织和科学计划的承诺。有关世界大会ICO-25-OWLS-16-DRESDEN-GERMANY-5-9- 9月2022年的信息,可以在https://wwwww.ico25.org的网站上找到以“光线为前进的社会”的主题。首先,我们只从光遗传学开始,然后与CRTD的遗传实验室进行非常成功的项目合作。今年发表了高质量论文,例如在生命科学联盟中,标题为“通过全息光遗传学跟踪人类干细胞衍生的神经元网络中的连通图”。用于多模纤维传输的新方法用于物理层安全性。使用现代波前塑形技术对纤维或组织中的散射过程的控制为应用的新方向开辟了新的方向。Nektarios Koukourakis博士和Jiawei Sun博士开创了细胞断层扫描,最近获得了大自然家族的出版物。 也以第二代量子技术获得了项目。Nektarios Koukourakis博士和Jiawei Sun博士开创了细胞断层扫描,最近获得了大自然家族的出版物。也以第二代量子技术获得了项目。人工智能,机器学习和深度学习正在扮演越来越重要的角色。深度神经网络可以通过无透镜纤维内窥镜来学习光传播,以分类人脑肿瘤。使用超薄内窥镜的恶性肿瘤和良性肿瘤的这种新分化方法有望实时进行晚期医学诊断。来自BMBF的重要资金是由Enowa I,Enowa II,Korona,Quiet,6glife,Gobio等项目实现的。我们喜欢强调国际网络,包括:中国廷华大学Liangcai Cao;奥地利Tu Graz的JakobWoisetschläger; WACLAW URBANCZYK,KINGA×OVENACZ,WROCLAW UNIV。科学技术;中国技术大学的Jinping Qu;亚当·皮尔斯(Adam Pierce),加州大学伯克利分校; Zeyu Gao,Ping Yang,中国科学院,成都; Danfeng Lu,中国西安技术大学,“自适应光学”,访问研究员(2023-2024)。 此外,合作社与美国耶鲁大学一起运行;美国斯坦福大学;科学技术;中国技术大学的Jinping Qu;亚当·皮尔斯(Adam Pierce),加州大学伯克利分校; Zeyu Gao,Ping Yang,中国科学院,成都; Danfeng Lu,中国西安技术大学,“自适应光学”,访问研究员(2023-2024)。此外,合作社与美国耶鲁大学一起运行;美国斯坦福大学;