并在其 23 年的任期内为 LMS 的成功发挥了不可或缺的作用。Martin Pfennigbauer 博士也是维也纳技术大学的毕业生,拥有通信工程学位和电气工程博士学位,于 2005 年加入该公司,目前担任研究和知识产权总监。Pfennigbauer 在大学的工作(由 ESA 使用)包括卫星对卫星和卫星对地面通信。由于来自太空的信号很弱,他对灵敏探测器的研究非常适合激光回波信号。管理团队的最后一位成员是 Johannes Riegl Jr。他拥有维也纳应用科学大学的工商管理硕士学位。作为 Riegl 的首席营销官,Johannes 负责举办非常成功的 Riegl 会议,
每年,国际摄影测量与遥感学会 (ISPRS) 都会从《ISPRS 摄影测量与遥感杂志》的众多出版物中评选出年度最佳论文。2019 年,该奖项授予了科学文章《用于极浅水域激光雷达测深的全波表面和底部检测算法的设计和评估》,作者是 Roland Schwarz、Gottfried Mandlburger、Martin Pfennigbauer 和 Norbert Pfeifer。RIEGL 研究部的 Roland Schwarz 和 Martin Pfennigbauer 与维也纳科技大学和斯图加特大学合作,成功地利用他们文章中提出的 SVB 算法(表面、体积和底部)为水下地形测绘做出了新的创新贡献。他们的方法的一个显著优势是它只依赖于单一激光波长。陪审员对回报波形的详细建模、解释的清晰度、令人信服的实验结果以及该方法更广泛适用的潜力印象深刻。
机载和地面激光扫描中的回波数字化和波形分析 ANDREAS ULLRICH,MARTIN PFENNIGBAUER,霍恩,奥地利 摘要 基于短激光脉冲飞行时间测距的激光雷达技术能够以所谓的点云形式获取准确而密集的 3D 数据。该技术适用于不同的平台,如地面激光扫描中的稳定三脚架或机载和移动激光扫描中的飞机、汽车和船舶。从历史上看,这些仪器使用模拟信号检测和处理方案,但专用于科学研究项目或水深测量的仪器除外。2004 年,一款用于商业应用和大量数据生成的激光扫描仪设备 RIEGL LMS-Q560 被推向市场,它采用了一种激进的替代方法:对仪器接收到的每个激光脉冲的回波信号进行数字化,并在所谓的全波形分析中离线分析这些回波信号,以便使用适用于特定应用的透明算法检索回波信号中包含的几乎所有信息。在激光扫描领域,从那时起就建立了一个不太具体的术语“全波形数据”。我们尝试对市场上发现的不同类型的全波形数据进行分类。我们从仪器制造商的角度讨论了回波数字化和波形分析中的挑战。我们将讨论使用这种技术所能获得的好处,特别是关于脉冲飞行时间激光雷达仪器所谓的多目标能力。