摘要:本研究探讨了基于机器学习的中风图像重建在电容耦合电阻抗断层扫描中的潜力。研究了使用对抗神经网络 (cGAN) 重建的脑图像的质量。使用二维数值模拟生成监督网络训练所需的大数据。无撞击损伤和有撞击损伤的头部轴向横截面模型平均为 3 厘米厚的层,与传感电极的高度相对应。使用具有特征电参数的区域对中风进行建模,这些区域是灌注减少的组织。头部模型包括皮肤、颅骨、白质、灰质和脑脊液。在 16 电极电容式传感器模型中考虑了耦合电容。使用专用的 Matlab ECTsim 工具包来解决正向问题并模拟测量。使用数字生成的数据集训练条件生成对抗网络 (cGAN),该数据集包含健康患者和出血性或缺血性中风患者的样本。验证表明,使用监督学习和 cGAN 获得的图像质量令人满意。当图像对应于中风患者时,可以从视觉上区分,出血性中风引起的变化最为明显。继续进行图像重建以测量物理幻影是合理的。
适用于外模线应用的高级耐腐蚀涂层……………………………………………………………………………………………………………………………………………………………………………………………… 波音幻影工厂,华盛顿州西雅图;S. Ray Taylor 和 Chad Hunter,弗吉尼亚大学,弗吉尼亚州夏洛茨维尔;Gordon Bierwagon 和 Brendon Carlson,北达科他州立大学,北达科他州法戈;Joshua Du 和 Matthew Damron,Chemat Technology, Inc.,加利福尼亚州北岭;Michael S. Donley,空军研究实验室,俄亥俄州赖特-帕特森空军基地
适用于外模线应用的高级耐腐蚀涂层……………………………………………………………………………………………………………………………………………………………………………………………… 波音幻影工厂,华盛顿州西雅图;S. Ray Taylor 和 Chad Hunter,弗吉尼亚大学,弗吉尼亚州夏洛茨维尔;Gordon Bierwagon 和 Brendon Carlson,北达科他州立大学,北达科他州法戈;Joshua Du 和 Matthew Damron,Chemat Technology, Inc.,加利福尼亚州北岭;Michael S. Donley,空军研究实验室,俄亥俄州赖特-帕特森空军基地
有两种介绍Philippe Steininger的方法。首先,作为一名出色的普通官,出生于1960年,他加入了20岁的法国空军学院,在担任战斗机飞行员的整体职业生涯之前。他在Mirage IIIE上首次亮相了防空,然后乘飞机飞行了F-4F Phantom,作为与Luftwaffe的交流计划的一部分。他在关闭1/12 Cambraisis战斗机中队的指挥官之前,专门针对捷豹攻击了捷豹,飞行了2000年。他接下来是在军方和政治领域之间的十字路口担任法国空军工作人员。他的最后任务是作为战略空军指挥官,当时是国防和国家安全秘书处的副秘书长。在后一项方面,他成为负责协调部委在这两个领域的行动的机构的高级官员。目前,法国国家太空研究中心(CNES)主席的军事顾问,P。Steneninger远不止是一名飞行员。他是一个军事的人,熟悉政治要求和意外事件。
名义响应20 Nc/gy长期稳定性≤0.5%≤0.5%室电压400 V标称±500 V最大极性效应在60 CO <0.5%的室轴上参考点,腔室尖端光子能量次≤±2%的13 mm距离腔室尖端的能量响应(70 kV ... 280 kV ... 280 kV)≤±4%(200 kV)的旋转0. 200 kV响应0. 200 kv ... co fre率(200 kV)。腔室轴和旋转的轴泄漏电流≤±4 fa电缆泄漏≤1pc/(gy·cm)
摘要 目的。基于皮层电图 (ECoG) 的脑机接口 (BCI) 是恢复神经功能障碍患者运动和感觉功能的有前途的平台。这种双向 BCI 操作需要同时记录 ECoG 和刺激,这在存在强刺激伪影的情况下具有挑战性。如果 BCI 的模拟前端在超低功耗模式下运行,这个问题会更加严重,这是完全植入式医疗设备的基本要求。在本研究中,我们开发了一种新方法,用于在刺激伪影到达模拟前端之前抑制它们。方法。利用基本的生物物理考虑,我们设计了一种伪影抑制方法,该方法采用在主刺激器和记录网格之间传递的弱辅助刺激。然后通过约束优化程序找到该辅助刺激偶极子的确切位置和幅度。在模拟和幻影脑组织实验中测试了我们方法的性能。主要结果。通过优化程序找到的解决方案在模拟和实验中都与最佳抵消偶极子相匹配。在模拟和脑幻影实验中分别实现了高达 28.7 dB 和 22.9 dB 的伪影抑制。意义。我们开发了一种简单的基于约束优化的方法来查找产生最佳伪影抑制的辅助刺激偶极子的参数。我们的方法在刺激伪影到达模拟前端之前对其进行抑制,并可能防止前端放大器饱和。此外,它可以与其他伪影缓解技术一起使用,以进一步减少刺激伪影。
UAS 图像已成为地貌研究中广泛使用的信息来源。当使用摄影测量方法来量化地貌变化时,相机校准对于确保图像测量的准确性至关重要。基于调查数据的自校准不足会导致系统误差,从而导致 DEM 变形。消费级传感器的几何稳定性通常较低,因此需要进行现场校准,因为实验室校准的可靠性会受到运输的影响。在本研究中,提出了一种强大的现场工作流程,可以同时对热传感器和光学传感器进行省时且可重复的校准。以石头建筑为校准对象,并以 TLS 扫描为参考。该方法使用两个传感器(DJI Phantom 4 Pro 和 Workswell WIRIS pro)、两个软件解决方案(视觉测量系统 (VMS) 和 Agisoft Metashape)和每个传感器的两个不同图像子集来计算八个单独的相机校准。所呈现的结果表明,该方法适用于确定预校准摄影测量调查的相机参数。
摘要:支持 EEG 的耳塞代表着超越传统实验室测试的脑活动监测领域的一个有前途的前沿。它们的离散外形和与大脑的接近度使它们成为第一代离散非侵入式脑机接口 (BCI) 的理想候选。然而,这项新技术需要全面的特性描述,才能被广泛用于消费者和健康相关领域。为了满足这一需求,我们开发了一个验证工具包,旨在促进和扩大对耳-EEG 设备的评估。该工具包的第一个组件是一个桌面应用程序(“EaR-P Lab”),它控制几个 EEG 验证范例。此应用程序使用实验室流层 (LSL) 协议,使其与大多数当前 EEG 系统兼容。该工具包的第二个元素将幻影评估概念的改编引入了耳-EEG 领域。具体而言,它利用测试对象耳朵的 3D 扫描来模拟耳朵周围和内部的典型 EEG 活动,从而可以对不同的耳-EEG 外形和传感器配置进行受控评估。每种 EEG 范例都使用湿电极耳部 EEG 记录进行验证,并与头皮 EEG 测量结果进行对比。耳部 EEG 模型成功获取了硬件特性的性能指标,揭示了基于电极位置的性能差异。此信息用于优化电极参考配置,从而提高了听觉稳态响应 (ASSR) 功率。通过这项工作,我们开发了耳部 EEG 评估工具包,旨在促进对新型耳部 EEG 设备从硬件到神经信号采集的系统评估。
当手臂或腿部的一部分被手术切除(肢体截肢)时,肢体末端的神经会被切断。这通常会导致两种类型的持续性肢体疼痛:残肢疼痛通常由形成疼痛性良性肿瘤的神经末梢引起,或肢体被切除部分产生的幻肢痛。这些疼痛很难通过标准止痛方法治疗,有时即使接受治疗也不会消失。有针对性的肌肉神经再支配包括重新布置被切断的神经,将它们连接到附近肌肉中的其他神经(神经再支配)。该手术的目的是控制肢体截肢后的疼痛。