•患有无法切除或转移性HER2阳性乳腺癌的成年患者,他们在转移性环境中或新辅助或辅助疗法中接受了先前的基于抗HER2的治疗疗法,在6 mos的疾病复发中,在6 mos的完整疗法中复发(destiny-breast01,destiny-breast01,-breast03 trials,-breast03 trials,nct0322224888888888888888888888888888888888888888888888892,NCT) ado-trastuzumab
个性化医疗代表着一种范式转变,从传统的“一刀切”方法转变为考虑个人遗传、环境和生活方式因素的更具针对性的医疗模式。本文探讨了人工智能 (AI) 与个性化药物治疗的整合,重点介绍了 AI 技术如何增强治疗计划的定制化。AI 能够分析大型复杂数据集(包括基因图谱、临床病史和生活方式信息),从而实现更精确的药物选择、剂量优化和结果预测。本文探讨了 AI 对个性化医疗的关键贡献领域,包括基因数据分析、多组学整合、预测模型和实时治疗调整。它还讨论了 AI 在提高治疗效果、减少反复试验方法和提高患者满意度方面的优势。然而,AI 的整合带来了一些挑战,例如数据隐私问题、系统兼容性需求以及解决道德问题。展望未来,本文概述了人工智能驱动的个性化医疗的未来趋势,包括人工智能技术的进步、个性化护理的扩展以涵盖更广泛的数据源,以及跨学科合作对推进研究的重要性。人工智能在个性化医疗中的前景在于它有可能通过提供更有效、个性化的治疗来彻底改变药物治疗,从而提高整体患者护理和治疗效果。
摘要:靶向蛋白质降解的领域呈指数增长。然而,对提供机械见解的药代动力学/药效学模型的需求未满足,同时在药物发现环境中实际上也很有用。因此,我们已经开发了一个全面的建模框架,可以应用于常规项目的实验数据,到:(1)基于准确的降解指标评估Protac,(2)指导最关键参数的化合物优化,(3)将降解降解到下游药物效应。所提出的框架包含了许多第一个特征:(1)一种机械模型,可以在Protac浓度降解中效应钩子效应,(2)(2)量化靶占用作用在Protac动作机制中的作用和(3)靶向降解和靶标的proticat效应的效应的靶标在protak protica的作用机制中的作用和靶标的proticat效应的效应。为了说明适用性并建立信心,我们采用了这三种模型来分析来自不同项目和目标的各种化合物的示例性数据。提出的框架使研究人员可以量身定制其实验性工作,并更好地了解其结果,最终导致更成功的Protac发现。这里的重点在于体外药理学实验,但还讨论了体内研究的关键含义。
摘要简介/目标。草药一直是整个人类历史上至关重要的可再生医学来源,因为大部分全球人口仍然取决于它们的健康益处。草药补充剂的日益普及引起了人们对与其他药物原位的总体安全性和潜在互动的明显关注。目的是刺激对草药 - 药物相互作用的未来研究,以及了解这种相互作用的后果的相互作用机制。方法。该审查是通过使用Google Scholar,Science Direct,Mendeley,Scopus和PubMed的数据库进行系统搜索进行的。用英语编写的出版物被使用。据报道,许多草药产品与已知的东正教药物相互作用。抑制诱导机制触发链反应,通常导致药物生物利用度,毒性或不良副作用降低。据报道,一些草药植物构成结合了CYP2C9,CYP2C19,CYP2E1和CYP3A1,以及许多其他暂时或不可逆地结合了CYP3A1。结论。这项研究是通过重申常规和定期向医生和患者提供固有危险(例如降低疗效和与Herb-Drug相互作用(HDI)相关的毒性增加)的不完善性结束的结论。草药使用者应定期建议适当使用草药补充剂,以避免在共同给药期间或联合疗法中发生不良药物相互作用的风险。在HDI中可以观察到协同作用和拮抗作用,因此需要进一步的临床前和临床经验研究来强调HDI的机制和程度。关键字:草药 - 药物相互作用,酶,药代动力学互动,传统医学,细胞色素P450通讯作者:Mary O. Ologe电子邮件:FunMiologe@yahoo.com
肾细胞癌 (RCC) 是最致命的泌尿系统癌症,临床实践表明,RCC 对常见疗法的耐药率极高。小檗碱是一种异喹啉生物碱,存在于不同种类的植物中,长期以来一直用于中药。它具有抗氧化、抗炎、抗糖尿病、抗菌和抗癌等多种特性。此外,小檗碱具有光敏特性,其与光动力疗法 (PDT) 相结合可有效对抗肿瘤细胞。本研究旨在评估小檗碱与 PDT 相结合对肾癌细胞系的影响。细胞活力测定显示细胞毒性以浓度和时间依赖性方式增加。小檗碱在所有分析的细胞系中均表现出有效的内化作用。此外,在用小檗碱与 PDT 相结合治疗后,观察到高光毒性作用,活细胞不到 20%。在本研究中,我们观察到活性氧 (ROS) 水平的增加伴随着自噬水平的增加和 caspase 3 活性导致的细胞凋亡,表明细胞死亡是通过这两种机制进行的。此外,抗癌药物的三种靶基因在 786-O 细胞中存在差异表达,即在用小檗碱联合 PDT 治疗后,血管内皮生长因子-D ( FIGF) 和人端粒酶逆转录酶 ( TERT ) 基因呈现低表达,而 Polo 样激酶 3 ( PLK3) 呈现过表达。在本研究中,拟议的治疗方法引发了与细胞增殖、肿瘤发生和血管生成有关的代谢物变化。因此,有可能表明小檗碱作为光动力疗法中的光敏剂具有良好的潜力,因为它对肾癌细胞诱导了显著的抗癌作用。
联合药物疗法是成功治疗多种疾病的关键,在这些疾病中单一疗法效果不够好或出现了耐药性。因此,开发新的药物组合是主要关注点。固定剂量组合也是如此,近年来批准的固定剂量组合有所增加。开发固定剂量组合通常需要进行大规模析因设计研究以验证组合的疗效。随着对药物个性化的更多关注,需要为患者提供几种剂量水平的固定剂量组合。对于析因设计研究,这将导致非常昂贵的临床试验。为了降低开发成本并指导药物开发,必须验证现有工具并开发新工具。然而,用于分析固定剂量组合的此类基于模型的工具还处于起步阶段。
组织主席:Kalpana Divekar博士:ppl-pharmacy@dsu.edu.idu.in召集人:Sonal Dubey博士:dsu-pharmacon@dsu.edu.in.in | +91 9035500090共同征收:Prashant Tiwari博士:dsu-pharmacon@dsu.edu.in | +91 7828865022
研究药物从给药部位移动到药理作用部位并从体内消除的过程称为“药代动力学”。影响药物在体内移动(动力学)和命运的因素有:(1)从剂型中释放;(2)从给药部位吸收进入血液;(3)分布到身体各个部位,包括作用部位;(4)通过代谢或排泄原形药物从体内消除的速率。这些过程通常用首字母缩略词 ADME 来表示:吸收、分布、代谢和排泄。药物的 ADME 参数用各种术语来描述,例如 Cmax(血清中药物的最大浓度);Tmax(达到最大药物浓度的时间)
注意医学是一门不断变化的科学。随着新的研究和临床经验扩大了我们的知识,需要对治疗和药物治疗的变化。这项工作的作者和出版商已与据信可靠的消息来源进行了核对,以提供完整的信息,并且通常符合出版时接受的标准。然而,鉴于人为错误或医学科学的变化的可能性,作者,出版商或任何参与此工作的准备或出版的其他方都不是在此处所包含的信息准确或完整的信息,并且它们不承担任何责任或遗漏的所有责任,或者从本工作中所包含的信息中获得的所有责任,或者从所获得的结果中获得的结果。读者被鼓励确认此处包含的其他来源的信息。,例如,建议读者检查他们计划管理的每种药物包装中包含的产品信息表,以确保本工作中包含的信息准确,并且在建议的剂量或管理禁忌剂中尚未进行更改。与新药或不经常使用的药物有关,该建议特别重要。
iabetes mellitus是一种内分泌疾病。2型糖尿病被定义为碳水化合物,脂质和蛋白质的代谢缺陷,原因是胰岛素产生降低或胰岛素耐药性增加或两者的组合(1)。在2022年,根据国际糖尿病联合会(IDF)(https://idf.org/),5.37亿和9000万人分别在全球和东南亚患有糖尿病。在9000万个人中,有7,740万是印第安人,预计到2045年将超过1.34亿。根据IDF,印度人口中糖尿病的发生百分比为8.9。 根据世界卫生组织(WHO)数据,印度所有死亡的2%是由于糖尿病及其复杂的临床意义引起的,例如视网膜病,神经病,肾病,心血管疾病和皮肤疾病(https://wwww.who.int/)。 T2DM具有复杂的病理生理过程,涉及各种因素的一致作用,从而导致疾病发展(2)。 因此,靶向T2DM途径中多种蛋白质很重要。 必须在多野兽方法(3)中确定疾病不同途径中的高度互动蛋白。根据IDF,印度人口中糖尿病的发生百分比为8.9。根据世界卫生组织(WHO)数据,印度所有死亡的2%是由于糖尿病及其复杂的临床意义引起的,例如视网膜病,神经病,肾病,心血管疾病和皮肤疾病(https://wwww.who.int/)。T2DM具有复杂的病理生理过程,涉及各种因素的一致作用,从而导致疾病发展(2)。因此,靶向T2DM途径中多种蛋白质很重要。必须在多野兽方法(3)中确定疾病不同途径中的高度互动蛋白。