[4] Kisilevsky R. 从关节炎到阿尔茨海默病:关于淀粉样变性发病机制的最新概念。Can J Physiol Pharmacol,1987,65:1805-15 [5] György B、Lööv C、Zaborowski MP 等人。CRISPR/Cas9 介导的瑞典 APP 等位基因破坏作为早发性阿尔茨海默病的治疗方法。Mol Ther Nucleic Acids,2018,11:429-40 [6] Zetterberg H、Mattsson N. 了解散发性阿尔茨海默病的病因。Expert Rev Neurother,2014,14:621-30 [7] Jack CR Jr、Knopman DS、Jagust WJ 等人。阿尔茨海默病病理级联动态生物标志物的假设模型。Lancet Neurol,2010,9:119-28 [8] Ittner LM、Ke YD、Delerue F 等。tau 的树突状功能介导阿尔茨海默病小鼠模型中的淀粉样蛋白 β 毒性。Cell,2010,142:387-97 [9] Muralidar S、Ambi SV、Sekaran S 等。tau 蛋白在阿尔茨海默病中的作用:主要的病理因素。Int J Biol Macromol,2020,163:1599-617 [10] Wang X、Wang W、Li L 等。阿尔茨海默病中的氧化应激和线粒体功能障碍。 Biochim Biophys Acta, 2014, 1842: 1240-7 [11] Grothe M, Heinsen H, Teipel SJ. 成年年龄范围内以及阿尔茨海默病早期阶段胆碱能基底前脑萎缩。Biol Psychiatry, 2012, 71: 805-13 [12] He Y, Ruganzu JB, Jin H, et al. LRP1 敲低通过调节 TLR4/NF- κB/MAPKs 信号通路加重 Aβ 1-42 刺激的小胶质细胞和星形胶质细胞神经炎症反应。Exp Cell Res, 2020, 394: 112166 [13] Huang HC, Hong L, Chang P, et al.壳寡糖减弱Cu 2+诱导的细胞氧化损伤和细胞凋亡,涉及Nrf2激活。Neurotox Res,2015,27:411-20 [14] Tomljenovic L. 铝和阿尔茨海默病:经过一个世纪的争论,是否存在合理的联系?J Alzheimers Dis,2011,23:567-98 [15] Shen H,Guan Q,Zhang X,等。阿尔茨海默病神经炎症的新机制:肠道菌群介导的NLRP3炎症小体的激活。Prog Neuropsychopharmacol Biol Psychiatry,2020,100:109884 [16] Ferreira-Vieira TH,Guimaraes IM,Silva FR,等。阿尔茨海默病:针对胆碱能系统。Curr Neuropharmacol,2016,14:101-15 [17] Scannevin RH。针对神经退行性蛋白质错误折叠障碍的治疗策略。Curr Opin Chem Biol,2018,44:66-74 [18] Giau VV,Lee H,Shim KH 等人。CRISPR-Cas9 的基因组编辑应用促进阿尔茨海默病的体外研究。Clin Interv Aging,2018,13:221-33 [19] Gupta D,Bhattacharjee O,Mandal D 等人。CRISPR-Cas9 系统:基因编辑的新曙光。生命科学, 2019, 232: 116636 [20] Makarova KS, Wolf YI, Alkhnbashi OS, et al.更新了
参考文献1。Allen Je和Al。SCI Transl Med。2013; 5(171):1717; 2。 rb冻结和al。 Pharmacol's。 2021; 100:372-387; 3。 ns疯狂和al。 nat公社。 2019; 10:5221; 4。 Ishizawa J和Al。 癌细胞。 2019; 35:721-737 E9; 5。 PR仪式和Al。 ACS头。 2019; 14:1020-1029; 6。 chi as和al。 j神经。 2019; 145(1):97-105; 7。 theeler bj和al。 J Clin Oncol.2020; 8。 vv prabhu和al。 歌手res。 2020; 80(16_supplementary):5688-5688; 9。 Wagner J和Al。 循环单元。 2017; 16:1790-1799; 10。 Staley A和Al。 AM J Singing Res。 2021; 11(11):5374-5387; 11。 张Y和Al。 Oncol Front。 2020; 10:57141; 12。 Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。2013; 5(171):1717; 2。rb冻结和al。Pharmacol's。2021; 100:372-387; 3。ns疯狂和al。nat公社。2019; 10:5221; 4。 Ishizawa J和Al。 癌细胞。 2019; 35:721-737 E9; 5。 PR仪式和Al。 ACS头。 2019; 14:1020-1029; 6。 chi as和al。 j神经。 2019; 145(1):97-105; 7。 theeler bj和al。 J Clin Oncol.2020; 8。 vv prabhu和al。 歌手res。 2020; 80(16_supplementary):5688-5688; 9。 Wagner J和Al。 循环单元。 2017; 16:1790-1799; 10。 Staley A和Al。 AM J Singing Res。 2021; 11(11):5374-5387; 11。 张Y和Al。 Oncol Front。 2020; 10:57141; 12。 Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。2019; 10:5221; 4。Ishizawa J和Al。癌细胞。2019; 35:721-737 E9; 5。 PR仪式和Al。 ACS头。 2019; 14:1020-1029; 6。 chi as和al。 j神经。 2019; 145(1):97-105; 7。 theeler bj和al。 J Clin Oncol.2020; 8。 vv prabhu和al。 歌手res。 2020; 80(16_supplementary):5688-5688; 9。 Wagner J和Al。 循环单元。 2017; 16:1790-1799; 10。 Staley A和Al。 AM J Singing Res。 2021; 11(11):5374-5387; 11。 张Y和Al。 Oncol Front。 2020; 10:57141; 12。 Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。2019; 35:721-737 E9; 5。PR仪式和Al。ACS头。2019; 14:1020-1029; 6。 chi as和al。 j神经。 2019; 145(1):97-105; 7。 theeler bj和al。 J Clin Oncol.2020; 8。 vv prabhu和al。 歌手res。 2020; 80(16_supplementary):5688-5688; 9。 Wagner J和Al。 循环单元。 2017; 16:1790-1799; 10。 Staley A和Al。 AM J Singing Res。 2021; 11(11):5374-5387; 11。 张Y和Al。 Oncol Front。 2020; 10:57141; 12。 Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。2019; 14:1020-1029; 6。chi as和al。j神经。2019; 145(1):97-105; 7。 theeler bj和al。 J Clin Oncol.2020; 8。 vv prabhu和al。 歌手res。 2020; 80(16_supplementary):5688-5688; 9。 Wagner J和Al。 循环单元。 2017; 16:1790-1799; 10。 Staley A和Al。 AM J Singing Res。 2021; 11(11):5374-5387; 11。 张Y和Al。 Oncol Front。 2020; 10:57141; 12。 Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。2019; 145(1):97-105; 7。theeler bj和al。J Clin Oncol.2020; 8。vv prabhu和al。歌手res。2020; 80(16_supplementary):5688-5688; 9。Wagner J和Al。循环单元。2017; 16:1790-1799; 10。 Staley A和Al。 AM J Singing Res。 2021; 11(11):5374-5387; 11。 张Y和Al。 Oncol Front。 2020; 10:57141; 12。 Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。2017; 16:1790-1799; 10。Staley A和Al。AM J Singing Res。2021; 11(11):5374-5387; 11。张Y和Al。Oncol Front。 2020; 10:57141; 12。 Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。Oncol Front。2020; 10:57141; 12。Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。Tucker K和Al。AM J Singing Res。2022; 12(2):521-536; 13。vv prabhu和al。Clins Ress。2019; 25:2305-2313; 14。Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。Jassal B和Al。九十res。2020 JAN 8; 48(D1):D498-D503。2020 JAN 8; 48(D1):D498-D503。
1.Rajkomar A、Oren E、Chen K 等人。利用电子健康记录进行可扩展且准确的深度学习。npj 数字医学。2018;1(1):1 – 10。https://doi.org/10.1038/s41746-018-0029-1。2.Paydar S、Pourahmad S、Azad M 等人。利用人工神经网络建立甲状腺结节恶性风险预测模型。《中东癌症杂志》。2016;7(1):47-52。3.Amato F、López A、Peña-Méndez EM、Va ň hara P、Hampl A、Havel J.医学诊断中的人工神经网络。J Appl Biomed。2013; 11(2):47-58。 https://doi.org/10.2478/v10136-012-0031-x。4.莫赫塔尔 AM.未来医院:业务架构视图。马来医学科学杂志。2017;24(5):1-6。 https://doi.org/10.21315/mjms2017.24.5.1。5.Liu X、Faes L、Kale AU 等人。深度学习与医疗保健专业人员在医学影像检测疾病方面的表现比较:系统评价和荟萃分析。柳叶刀数字健康。2019;1(6):e271-e297。https://doi.org/10.1016/s2589-7500 (19)30123-2。6.Nagendran M、Chen Y、Lovejoy CA 等人。人工智能与临床医生:深度学习研究的设计、报告标准和主张的系统回顾。英国医学杂志。2020;368:m689。https://doi.org/10.1136/bmj.m689。7.Panch T、Pearson-Stuttard J、Greaves F、Atun R. 人工智能:公共健康的机遇和风险。柳叶刀数字健康。2019;1 (1):e13-e14。https://doi.org/10.1016/s2589-7500(19)30002-0。8.Landes J、Osimani B、Poellinger R. 药理学中的因果推理的认识论。欧洲哲学杂志。2018;8(1):3-49。 https://doi.org/10。1007/s13194-017-0169-1。9.Abdin AY、Auker-Howlett D、Landes J、Mulla G、Jacob J、Osimani B.审查机械证据评估者 E-synthesis 和 EBM +:阿莫西林和药物反应伴有嗜酸性粒细胞增多和全身症状 (DRESS) 的案例研究。当前药学设计。2019;25(16):1866-1880。https://doi.org/10.2174/1381612825666190628160603。10.De Pretis F,Osimani B.药物警戒计算方法的新见解:E-synthesis,一种用于因果评估的贝叶斯框架。国际环境研究公共卫生杂志。11.2019;16(12):1 – 19。https://doi.org/10.3390/ijerph16122221。De Pretis F、Landes J、Osimani B。E-synthesis:药物监测中因果关系评估的贝叶斯框架。Front Pharmacol 。2019;10:1-20。https://doi.org/10.3389/fphar.2019.01317。12。De Pretis F、Peden W、Landes J、Osimani B。药物警戒作为个性化证据。收录于:Beneduce C、Bertolaso M 编辑。个性化医疗正在形成。从生物学到医疗保健的哲学视角。瑞士 Cham:Springer;2021:19 即将出版。13.那不勒斯 RE。学习贝叶斯网络。Prentice Hall 人工智能系列。新泽西州 Upper Saddle River:Pearson Prentice Hall;2004 年。14.Hill AB。环境与疾病:关联还是因果关系?J R Soc Med。2015;108(1):32-37。本文首次发表于 JRSM 第 58 卷第 5 期,1965 年 5 月。https://doi.org/10.1177/ 0141076814562718。15.Mercuri M、Baigrie B、Upshur RE。从证据到建议:GRADE 能帮我们实现目标吗?J Eval Clin Pract 。2018;24(5):1232- 1239。https://doi.org/10.1111/jep.12857。
出版物 Liebing AD, Rabe P, Krumbholz P, Zieschang C, Bischof F, Schulz A, Billig S, Birkemeyer C, Pillaiyar T, Garcia-Marcos M, Kraft R, Stäubert C (2025) 琥珀酸受体 1 信号转导相互依赖于亚细胞定位和细胞代谢。 FEBS J doi:10.1111/febs.17407 Röthe J, Kraft R , Ricken A, Kaczmarek I, Matz-Soja M, Winter K, Dietzsch AN, Buchold J, Ludwig MG, Liebscher I, Schöneberg T, Thor D (2024) 小鼠粘附 GPCR GPR116/ADGRF5 在胰岛调节中具有双重功能生长抑素释放和胰岛发育。共同生物学7:104。 Kaczmarek I、Wower I、Ettig K、Kuhn C、Kraft R、Landgraf K、Körner A、Schöneberg T、Horn S、Thor D (2023) 使用创新的 RNA-seq 数据库 FATTLAS 识别参与脂肪组织功能的 GPCR。iScience 26:107841。Peters A、Rabe P、Liebing AD、Krumbholz P、Nordström A、Jäger E、Kraft R、Stäubert C (2022) 羟基羧酸受体 3 和 GPR84 – 两种在先天免疫细胞中具有相反功能的代谢物感应 G 蛋白偶联受体。Pharmacol Res 176:106047。 Rabe P、Liebing AD、Krumbholz P、Kraft R、Stäubert C (2022) 琥珀酸受体 1 抑制对谷氨酰胺上瘾的癌细胞的线粒体呼吸。Cancer Lett 526:91-102。Peters A、Rabe P、Krumbholz P、Kalwa H、Kraft R、Schöneberg T、Stäubert C (2020) 羟基羧酸受体 3 和 G 蛋白偶联受体 84 的自然偏向信号传导。Cell Commun Signal 18:31。Röthe J、Kraft R、Schöneberg T、Thor D (2020) 探索原发性胰腺胰岛中的 G 蛋白偶联受体信号传导。Biol Proced Online 22:4。 Stegner D, Hofmann S, Schuhmann MK, Kraft P, Herrmann AM, Popp S, Höhn M, Popp M, Klaus V, Post A, Kleinschnitz C, Braun A, Meuth SG, Lesch KP, Stoll G, Kraft* R , Nieswandt* B (2019) Orai2 介导的电容性 Ca 2+ 条目的丢失具有神经保护作用急性缺血性中风。笔画 50:3238-3245。 Röthe* J、Thor* D、Winkler J、Knierim AB、Binder C、Huth S、Kraft R、Rothemund S、Schöneberg T、Prömel S (2019) 粘附 GPCR 卵白蛋白参与调节胰岛素释放。 Cell Rep 26:1573-1584。Kraft R (2015) 神经系统中的 STIM 和 ORAI 蛋白。Channels (Austin) 9:235-243。Michaelis M、Nieswandt B、Stegner D、Eilers J、Kraft R (2015) STIM1、STIM2 和 Orai1 调节钙池操纵的钙内流和小胶质细胞的嘌呤能激活。Glia 63:652-663。Kallendrusch S、Kremzow S、Nowicki M、Grabiec U、Winkelmann R、Benz A、Kraft R、Bechmann I、Dehghani F、Koch M (2013) G 蛋白偶联受体 55 配体 L-α-溶血磷脂酰肌醇在兴奋毒性损伤后发挥小胶质细胞依赖性神经保护作用。 Glia 61:1822-1831。Wegner F、Kraft R、Busse K、Härtig W、Leffler A、Dengler R、Schwarz J(2012 年)分化的人类中脑衍生神经祖细胞表达含有 α2β 亚基的兴奋性士的宁敏感甘氨酸受体。PLoS One 7:e36946。
[1] M. V. Chao,“神经营养蛋白及其受体:许多信号通路的收敛点”,Nat。修订版Neurosci。,卷。4,不。4,pp。299–309,2003。[2] M. Bothwell,“ NGF,BDNF,NT3和NT4”,在神经营养因素中。实验药理学手册,施普林格,柏林,海德堡,2014年。[3] R. Levi-Montalcini,H。Meyer和V. Hamburger,“体外实验对小鼠肉瘤180和37对雏鸡胚胎的感觉和交感神经系统的影响,”癌症Res。,1954年。[4] R. Levi-Montalcini,“ 35年后的神经生长因子”,科学(80-。)。,1987。[5] Y.A. Barde,D。Edgar和H. Thoenen,“哺乳动物大脑的新神经营养因子的纯化”,Embo J.,1982。[6] K. R. Jones和L. F. Reichardt,“人类基因的分子克隆,该基因是神经生长因子家族的成员。”natl。学院。SCI。 U. S. A.,1990。 [7] P. C. Maisonpierre等。 ,“神经营养蛋白3:与NGF和BDNF有关的神经营养因子”,科学(80-。 )。 ,1990。 [8] A. Hohn,J。Leibrock,K。Bailey和Y. A. Barde,“神经生长因子/脑源性神经营养因子家族的新成员的识别和表征”,自然,1990年。 [9] A. Rosenthal等。 ,“新型人类神经营养因子的主要结构和生物学活性”,Neuron,1990。 [10] N. Y. IP等。 natl。 学院。 SCI。SCI。U. S. A.,1990。[7] P. C. Maisonpierre等。,“神经营养蛋白3:与NGF和BDNF有关的神经营养因子”,科学(80-。)。,1990。[8] A. Hohn,J。Leibrock,K。Bailey和Y.A. Barde,“神经生长因子/脑源性神经营养因子家族的新成员的识别和表征”,自然,1990年。[9] A. Rosenthal等。,“新型人类神经营养因子的主要结构和生物学活性”,Neuron,1990。[10] N. Y. IP等。natl。学院。SCI。SCI。,“哺乳动物神经营养蛋白4:结构,染色体定位,组织分布和受体特异性。”U. S. A.,1992。[11] R. Gotz等。,“ Neurotrophin-6是神经生长因子家族的新成员”,自然,1994年。[12] K. O. Lai,W。Y. Fu,F。C. F. Ip和N. Y.单元格。Neurosci。,1998。[13] M. A. Bothwell和E. M. Shopter,“β神经生长因子的离解平衡常数”,J Biol Chem,1977。[14] C. Radziejewski,R。C。Robinson,P。S。S. Distefano和J. W. Taylor,“脑源性神经营养因子和神经营养因子和神经营养蛋白3。的二聚体结构和构象稳定性,” Biiochemistry,1992。[15] M. J. Butte,P。K。Hwang,W。C。Mobley和R. J. Fletterick,“ Neurotrophin-3同二聚体的晶体结构显示出不同的区域用于结合其受体,” 1998年。[16] N.[17] R. C. Robinson等。,“神经营养蛋白4同二聚体的结构和脑衍生的神经营养因子/神经营养蛋白4异二聚体揭示了一个常见的TRK结合位点,”蛋白质SCI。,2008。[18] K. K. Teng,S。Felice,T。Kim和B. L. Hempstead,“了解胸部营养蛋白的作用:最近的进步和挑战”,发展性神经生物学。2010。401–3,1992。:ebsCohost,” Annu。修订版Neurosci。[19] G. CM,“通过生理活性调节脑神经营养蛋白表达。”趋势Pharmacol Sci,pp。[20] S. D. Skaper,“神经营养因素:概述”,《分子生物学方法》,2018年。[21] A. K. McAllister,L。C。Katz和D. C. Lo,“神经营养蛋白和突触可塑性。,1999。[22] S. Pezet和S. B. McMahon,“神经营养蛋白:疼痛的介体和调节剂”,Annu。修订版Neurosci。,2006年。[23] D. R. Kaplan,B。L。Hempstead,D。Martin-Zanca,M。V。Chao和L. F. Parada,“ TRK原型癌基产品:神经生长因子的信号传递受体,”科学(80-。)。,1991。[24] R. Klein等。,“ TRKB酪氨酸蛋白激酶是脑源性神经营养因子
1 Gallagher, M. D. 和 Chen‐Plotkin, A. S. 后 GWAS 时代:从关联到功能。Am J Hum Genet 102 , 717-730, doi:10.1016/j.ajhg.2018.04.002 (2018)。2 Hoffmann, A.、Ziller, M. 和 Spengler, D. 关注基于 ESC/iPSC 的精神疾病建模中的因果关系。Cells 9 , doi:10.3390/cells9020366 (2020)。3 Kampmann, M. 基于 CRISPR 的神经系统疾病功能基因组学。Nat Rev Neurol 16 , 465-480, doi:10.1038/s41582-020-0373-z (2020)。 4 Matos, M. R.、Ho, S. M.、Schrode, N. 和 Brennand, K. J. CRISPR 工程与基于 hiPSC 的精神基因组学模型的整合。Mol Cell Neurosci 107 , 103532,doi:10.1016/j.mcn.2020.103532 (2020)。5 Soldner, F. 等人。在两个早发性帕金森病点突变处产生完全不同的同源多能干细胞。Cell 146 , 318-331,doi:10.1016/j.cell.2011.06.019 (2011)。6 Gresch, O. 等人。将基因转移到原代细胞的新型非病毒方法。方法 33 ,151-163,doi:10.1016/j.ymeth.2003.11.009 (2004)。7 Ihry, R. J. 等人。p53 抑制人类多能干细胞中的 CRISPR-Cas9 工程。Nat Med 24 ,939-946,doi:10.1038/s41591-018-0050-6 (2018)。8 Das, D.、Feuer, K.、Wahbeh, M. 和 Avramopoulos, D. 使用干细胞建立精神障碍生物学模型。Curr Psychiatry Rep 22 ,24,doi:10.1007/s11920-020-01148-1 (2020)。 9 Zhang, X. H., Tee, L. Y., Wang, X. G., Huang, Q. S. 和 Yang, S. H. CRISPR/Cas9 介导的基因组工程中的脱靶效应。Mol Ther Nucleic Acids 4,e264,doi:10.1038/mtna.2015.37 (2015)。10 Stewart, M. P.、Langer, R. 和 Jensen, K. F. 通过膜破坏进行细胞内递送:机制、策略和概念。Chem Rev 118,7409-7531,doi:10.1021/acs.chemrev.7b00678 (2018)。11 Ohgushi, M. 等人。导致人类多能干细胞解离诱导凋亡的分子途径和细胞状态。 Cell Stem Cell 7 , 225-239, doi:10.1016/j.stem.2010.06.018 (2010)。12 Chen, G., Hou, Z., Gulbranson, D. R. 和 Thomson, J. A. 肌动蛋白-肌球蛋白收缩性是导致分离的人类胚胎干细胞活力降低的原因。Cell Stem Cell 7 , 240-248, doi:10.1016/j.stem.2010.06.017 (2010)。13 Okamoto, S., Amaishi, Y., Maki, I., Enoki, T. 和 Mineno, J. 使用优化的 ssODN 和 Cas9-RNP 进行高效的基因组编辑,实现单碱基替换。 Sci Rep 9 , 4811, doi:10.1038/s41598-019-41121-4 (2019)。14 Vakulskas, C. A. 等人。以核糖核蛋白复合物形式递送的高保真 Cas9 突变体可在人类造血干细胞和祖细胞中实现有效的基因编辑。Nat Med 24 , 1216-1224, doi:10.1038/s41591-018-0137-0 (2018)。15 Geng, B. C. 等人。一种用于人类诱导多能干细胞的简单、快速、高效的 CRISPR/Cas9 基因组编辑方法。 Acta Pharmacol Sin 41 , 1427-1432,doi:10.1038/s41401-020- 0452-0 (2020)。16 Singh, A. M. 一种单细胞克隆人类多能干细胞的有效协议。Front Cell Dev Biol 7 , 11, doi:10.3389/fcell.2019.00011 (2019)。17 Yumlu, S. 等人。使用 CRISPR/Cas9 对人类诱导多能干细胞进行基因编辑和克隆分离。方法 121‐122 , 29‐44, doi:10.1016/j.ymeth.2017.05.009 (2017)。18 Cobo, F. 等人。电子显微镜显示小鼠胚胎成纤维细胞中存在病毒,但在人类胚胎成纤维细胞或用于 hESC 维护的人类间充质细胞中不存在病毒:在干细胞库中实施微生物质量保证计划。克隆干细胞 10, 65-74,doi:10.1089/clo.2007.0020 (2008)。
3. G æ de P、Oellgaard J、Carstensen B 等人。多因素干预对 2 型糖尿病和微量白蛋白尿患者的寿命延长:Steno-2 随机试验的 21 年随访。糖尿病学。2016;59(11):2298-2307。4. 新兴风险因素协作组织,Di Angelantonio E、Kaptoge S 等人。心脏代谢多种疾病与死亡率的关系。JAMA。2015;314(1):52-60。5. Mosenzon O、Alguwaihes A、Leon JLA 等人。CAPTURE:一项跨国、横断面研究,研究 13 个国家 2 型糖尿病成人心血管疾病患病率。心血管糖尿病。2021;20(1):154。 6. Virani SS、Alonso A、Aparicio HJ 等人。心脏病和中风统计 - 2021 年更新:美国心脏协会的报告。循环。2021;143(8):e254-e743。7. Gyldenkerne C、Knudsen JS、Olesen KKW 等人。全国范围内 2 型糖尿病患者心脏病风险和死亡率趋势:丹麦队列研究。糖尿病护理。2021;2353-2360。8. Davies MJ、Aroda VR、Collins BS 等人。2 型糖尿病高血糖管理,2022 年。美国糖尿病协会 (ADA) 和欧洲糖尿病研究协会 (EASD) 的共识报告。糖尿病护理。 2022;45(11):2753-2786。9. Zelniker TA、Wiviott SD、Raz I 等。胰高血糖素样肽受体激动剂和钠-葡萄糖协同转运蛋白 2 抑制剂在预防 2 型糖尿病主要不良心血管和肾脏结局方面的作用比较。循环。2019;139(17):2022-2031。10. Sattar N、Lee MMY、Kristensen SL 等。2 型糖尿病患者使用 GLP-1 受体激动剂对心血管、死亡率和肾脏结局的影响:随机试验的系统评价和荟萃分析。柳叶刀糖尿病内分泌学。2021;9(10):653-662。11. 美国糖尿病协会专业实践委员会,Draznin B、Aroda VR 等。 9. 药物治疗血糖的方法:糖尿病医疗护理标准-2022。糖尿病护理。2022;45(增刊1):S125-S143。12. Funck KL、Knudsen JS、Hansen TK、Thomsen RW、Grove EL。2 型糖尿病和心血管疾病患者中心脏保护性降糖药物的实际使用情况:2012 年至 2019 年丹麦全国队列研究。糖尿病肥胖代谢。2021;23(2):520-529。13. Hofer F、Kazem N、Schweitzer R 等。冠状动脉疾病患者中钠-葡萄糖协同转运蛋白 2 抑制剂和胰高血糖素样肽-1 受体激动剂的处方模式。心血管药物治疗。 2021;35(6):1161-1170。14. Khunti K、Knighton P、Zaccardi F 等。2 型糖尿病患者降糖疗法处方与 COVID-19 死亡风险:英格兰全国性观察性研究。柳叶刀糖尿病内分泌学。2021;9(5):293-303。15. Thomsen RW、Friborg S、Nielsen JS、Schroll H、Johnsen SP。丹麦 2 型糖尿病战略研究中心 (DD2):丹麦糖尿病护理的组织以及 DD2 研究参与者数据收集的补充数据源。临床流行病学杂志。2012;4-(补充 1):15-19。16. Pottegård A、Schmidt SAJ、Wallach-Kildemoes H、Sørensen HT、Hallas J、Schmidt M。数据资源概况:丹麦国家处方登记处。国际流行病学杂志。2017;46(3):798。17. 世卫组织药品统计方法合作中心。ATC 分类索引与 DDD,2021 年。挪威奥斯陆;2020 年。18. Thygesen LC、Daasnes C、Thaulow I、Brønnum-Hansen H. 丹麦(全国)健康和社会问题登记册简介:结构、访问、立法和归档。 Scand J Public Health。2011;39(7 Suppl):12-16。19. Schmidt M、Schmidt SAJ、Sandegaard JL、Ehrenstein V、Pedersen L、Sørensen HT。丹麦国家患者登记处:内容、数据质量和研究潜力审查。CLEP。2015;449-490。20. Schmidt M、Pedersen L、Sørensen HT。丹麦民事登记系统作为流行病学工具。Eur J Epidemiol。2014;29(8):541-549。21. Rasmussen L、Valentin J、Gesser KM、Hallas J、Pottegård A。丹麦国家处方登记处处方者信息的有效性。Basic Clin Pharmacol Toxicol。 2016;119(4):376-380。
2。Tran BX,Vu GT,Ha GH,Vuong QH,Ho MT,Vuong TT等。健康和医学研究中人工智能研究的全球发展:一项文献计量学研究。J Clin Med。 2019; 8(3):360。 https://doi.org/10。 3390/jcm8030360 3。 Dipiro JT,Nesbit TW,Reuland C,Cunningham FE,Schweitzer P,Chisholm-Burns MA等。 ASHP基金会药房预测2023:医院和卫生系统的药学部门战略规划指南。 AM J Health-syst Pharm。 2023; 90(2):10 - 35。https://doi.org/10.1093/ajhp/zxac274 4。 Wong A,Wentz E,Palisano N,Dirani M,Elsamadisi P,Qashou F等。 人工智能在药房实践中的作用:叙事评论。 J Am Coll Clin Pharm。 2023; 6(11):1237 - 1250。https://doi.org/10。 1002/jac5.1856 5。 美国临床药学院。 临床药剂师的实践标准。 J Am Coll Clin Pharm。 2023; 6(10):1156 - 1159。https://doi.org/10.1002/jac5.1873 6。 Huynh S,Rush L,Dadalias D,Githinji D,Ta M,Poole SG等。 时间和运动研究量化心脏病学,呼吸和老年临床药剂师的活性。 J Pharm ruth Res。 2022; 52(5):383 - 390。https://doi.org/10.1002/jppr.1825 7。 Wong D,Feere A,Yousefi V,Partovi N,Dahri K. Phar-Macists Hospital Phar-Macist的时间如何:一项工作采样研究。 可以Josp Pharm。 2020; 73(4):272 - 278。 8。 Am J Health-Syst Pharm。 药房从业者联合委员会。J Clin Med。2019; 8(3):360。 https://doi.org/10。3390/jcm8030360 3。Dipiro JT,Nesbit TW,Reuland C,Cunningham FE,Schweitzer P,Chisholm-Burns MA等。ASHP基金会药房预测2023:医院和卫生系统的药学部门战略规划指南。AM J Health-syst Pharm。2023; 90(2):10 - 35。https://doi.org/10.1093/ajhp/zxac274 4。Wong A,Wentz E,Palisano N,Dirani M,Elsamadisi P,Qashou F等。 人工智能在药房实践中的作用:叙事评论。 J Am Coll Clin Pharm。 2023; 6(11):1237 - 1250。https://doi.org/10。 1002/jac5.1856 5。 美国临床药学院。 临床药剂师的实践标准。 J Am Coll Clin Pharm。 2023; 6(10):1156 - 1159。https://doi.org/10.1002/jac5.1873 6。 Huynh S,Rush L,Dadalias D,Githinji D,Ta M,Poole SG等。 时间和运动研究量化心脏病学,呼吸和老年临床药剂师的活性。 J Pharm ruth Res。 2022; 52(5):383 - 390。https://doi.org/10.1002/jppr.1825 7。 Wong D,Feere A,Yousefi V,Partovi N,Dahri K. Phar-Macists Hospital Phar-Macist的时间如何:一项工作采样研究。 可以Josp Pharm。 2020; 73(4):272 - 278。 8。 Am J Health-Syst Pharm。 药房从业者联合委员会。Wong A,Wentz E,Palisano N,Dirani M,Elsamadisi P,Qashou F等。人工智能在药房实践中的作用:叙事评论。J Am Coll Clin Pharm。2023; 6(11):1237 - 1250。https://doi.org/10。1002/jac5.1856 5。美国临床药学院。临床药剂师的实践标准。J Am Coll Clin Pharm。2023; 6(10):1156 - 1159。https://doi.org/10.1002/jac5.1873 6。Huynh S,Rush L,Dadalias D,Githinji D,Ta M,Poole SG等。时间和运动研究量化心脏病学,呼吸和老年临床药剂师的活性。J Pharm ruth Res。2022; 52(5):383 - 390。https://doi.org/10.1002/jppr.1825 7。Wong D,Feere A,Yousefi V,Partovi N,Dahri K. Phar-Macists Hospital Phar-Macist的时间如何:一项工作采样研究。 可以Josp Pharm。 2020; 73(4):272 - 278。 8。 Am J Health-Syst Pharm。 药房从业者联合委员会。Wong D,Feere A,Yousefi V,Partovi N,Dahri K. Phar-Macists Hospital Phar-Macist的时间如何:一项工作采样研究。可以Josp Pharm。 2020; 73(4):272 - 278。 8。 Am J Health-Syst Pharm。 药房从业者联合委员会。可以Josp Pharm。2020; 73(4):272 - 278。8。Am J Health-Syst Pharm。药房从业者联合委员会。Lee JS,Nickman NA,PaceM。通过自我报告的工作抽样评估血液学/肿瘤学临床药物活动。 2022; 79(12):960 - 968。https://doi.org/10.1093/ajhp/ ZXAC057 9。 Mott DA,Arya V,Bakken BK,Doucette WR,Gaither CA,Kreling DH等。 2022年国家药剂师劳动力研究的最终报告。 2024 https://www.aacp.org/article/national-pharmacist-wortforce-研究10。 药剂师的患者护理过程。 2024 https://jcpp.net/patient-care-process/11。 Wang Z,Ong CLJ,Fu Z. AI模型以协助万古霉素剂量滴定。 前药。 2022; 13:801928。 https://doi.org/10.3389/ fphar.2022.801928 12。 Cai T,Anceschi U,Prata F,Collini L,Brugnolli A,Migno S等。 人工智能可以指导复发性UTI中的抗生素选择,并成为改善抗微生物管理的重要帮助。 反对Biot Basel Switz。 2023; 12(2):375。 https://doi.org/10.3390/抗生素112020375 13。 Hu Y,Huerta J,Cordella N,Mishuris RG,Paschalidis IC。 通过数据驱动模型提出的个性化高血压治疗建议。 BMC Med Infors Decis Mak。 2023; 23(1):44。 https://doi.org/10.1186/ S12911-023-02137-Z 14。 nayak A,Vakili S,Nayak K,Nikolov M,Chiu M,Sosseinheimer P等。 使用基于语音的对话人工智能在2型糖尿病患者中使用基础胰岛素处方管理:一项随机临床试验。 JAMA NetW Open。 2023; 6(12):E2340232。 https://doi.org/10.1001/jamanetworkopen.2023.40232 15。 nat Med。Lee JS,Nickman NA,PaceM。通过自我报告的工作抽样评估血液学/肿瘤学临床药物活动。2022; 79(12):960 - 968。https://doi.org/10.1093/ajhp/ ZXAC057 9。Mott DA,Arya V,Bakken BK,Doucette WR,Gaither CA,Kreling DH等。2022年国家药剂师劳动力研究的最终报告。2024 https://www.aacp.org/article/national-pharmacist-wortforce-研究10。药剂师的患者护理过程。2024 https://jcpp.net/patient-care-process/11。Wang Z,Ong CLJ,Fu Z. AI模型以协助万古霉素剂量滴定。前药。2022; 13:801928。 https://doi.org/10.3389/ fphar.2022.801928 12。Cai T,Anceschi U,Prata F,Collini L,Brugnolli A,Migno S等。人工智能可以指导复发性UTI中的抗生素选择,并成为改善抗微生物管理的重要帮助。反对Biot Basel Switz。2023; 12(2):375。 https://doi.org/10.3390/抗生素112020375 13。Hu Y,Huerta J,Cordella N,Mishuris RG,Paschalidis IC。通过数据驱动模型提出的个性化高血压治疗建议。BMC Med Infors Decis Mak。 2023; 23(1):44。 https://doi.org/10.1186/ S12911-023-02137-Z 14。 nayak A,Vakili S,Nayak K,Nikolov M,Chiu M,Sosseinheimer P等。 使用基于语音的对话人工智能在2型糖尿病患者中使用基础胰岛素处方管理:一项随机临床试验。 JAMA NetW Open。 2023; 6(12):E2340232。 https://doi.org/10.1001/jamanetworkopen.2023.40232 15。 nat Med。BMC Med Infors Decis Mak。2023; 23(1):44。 https://doi.org/10.1186/ S12911-023-02137-Z 14。nayak A,Vakili S,Nayak K,Nikolov M,Chiu M,Sosseinheimer P等。使用基于语音的对话人工智能在2型糖尿病患者中使用基础胰岛素处方管理:一项随机临床试验。JAMA NetW Open。 2023; 6(12):E2340232。 https://doi.org/10.1001/jamanetworkopen.2023.40232 15。 nat Med。JAMA NetW Open。2023; 6(12):E2340232。https://doi.org/10.1001/jamanetworkopen.2023.40232 15。nat Med。Akyon SH,Akyon FC,Yılmazte。人工智能 - 支持的Web应用程序设计和开发,用于减少多药副作用并支持老年患者的合理药物使用。前医学(Lausanne)。2023; 10:1029198。 https://doi.org/10.3389/ fmed.2023.1029198 16。Fragasso T,Raggi V,Passaro D,Tardella L,Lasinio GJ,Ricci Z.在儿科心脏重症监护病房中预测通过人工智能驱动的模型预测急性肾脏损伤。J Anesth肛门crit护理。2023; 3(1):37。 https://doi.org/10.1186/s44158-023-00125-3 17。Yao X,Rushlow DR,Inselman JW,McCoy RG,Thacher TD,Behnken EM等。具有人工智能的心电图,用于鉴定低射血分数患者:一项务实的,随机的临床试验。2021; 27(5):815 - 819。https:// doi。org/10.1038/s41591-021-01335-4
b'[2] C. Yan,X。Duanmu,L。Zeng,B。Liu,Z。歌曲,线粒体DNA:分布,突变和消除,细胞,8(2019)。[3] F. Liu,D.E。Sanin,X。Wang,肺癌中的线粒体DNA,实验医学与生物学进展,1038(2017)9-22。[4] J. Zhang,J。[5] P.P.Jia,M。Junaid,Y.B。 MA,F。Ahmad,Y.F。 jia,W.G。 li,D.S。 pei,人类DNA2(HDNA2)作为癌症和其他疾病的潜在靶点的作用:系统评价,DNA修复(AMST),59(2017)9-19。 [6] A. D \ XC3 \ Xadaz-Talavera,C。Montero-Conde,L.J。 Leandro-Garc \ XC3 \ Xada,M。Robledo,Primpol:DNA复制酶的突破和潜在的癌症治疗新靶标,生物分子,12(2022)。 [7] A.O. Giacomelli,X。Yang,R.E。 lintner,J.M. McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Jia,M。Junaid,Y.B。MA,F。Ahmad,Y.F。 jia,W.G。 li,D.S。 pei,人类DNA2(HDNA2)作为癌症和其他疾病的潜在靶点的作用:系统评价,DNA修复(AMST),59(2017)9-19。 [6] A. D \ XC3 \ Xadaz-Talavera,C。Montero-Conde,L.J。 Leandro-Garc \ XC3 \ Xada,M。Robledo,Primpol:DNA复制酶的突破和潜在的癌症治疗新靶标,生物分子,12(2022)。 [7] A.O. Giacomelli,X。Yang,R.E。 lintner,J.M. McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。MA,F。Ahmad,Y.F。jia,W.G。li,D.S。pei,人类DNA2(HDNA2)作为癌症和其他疾病的潜在靶点的作用:系统评价,DNA修复(AMST),59(2017)9-19。[6] A. D \ XC3 \ Xadaz-Talavera,C。Montero-Conde,L.J。Leandro-Garc \ XC3 \ Xada,M。Robledo,Primpol:DNA复制酶的突破和潜在的癌症治疗新靶标,生物分子,12(2022)。[7] A.O.Giacomelli,X。Yang,R.E。 lintner,J.M. McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Giacomelli,X。Yang,R.E。lintner,J.M.McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。McFarland,M。Duby,J。Kim,T.P。D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。D.Y. HowardTakeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Takeda,S.H。ly,E。Kim,H.S。Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Aguirre,J.G。Doench,F。Piccioni,C.W.M。Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Roberts,M。Meyerson,G。Getz,C.M。Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Johannessen,D.E。根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。[8] G.A.Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Fontana,H.L。[9] C.Y.dai,C.C。ng,G.C.C。Hung,I。Kirmes,L.A。Hughes,Y。gahlon,线粒体DNA缺失形成的复制和修复机制,核酸res,48(2020)11244-11258。du,C.A。Brosnan,A。Ahier,A。Hahn,C.M。 Haynes,O。Rackham,A。Filipovska,S。Zuryn,ATFS-1,通过促进转录修复,自然细胞生物学,25(2023)1111-1120来抵消线粒体DNA损伤。 [10] L. Ou,H。Liu,C。Peng,Y. [11] H. Liu,J。Weng,C.L.H。 Huang,A.P。 杰克逊,癌症的电压门控钠通道,生物标志物研究,12(2024)70。 [12] H. Liu,A。Dong,A.M。 Rasteh,P。Wang,J。Weng,乳腺癌中新型T细胞CD8 +标记的鉴定,Scientific Reports,14(2024)19142。 [13] H. Liu,T。Tang,基于MAPK信号途径的胶质瘤亚型,机器学习风险模型和关键集线器蛋白识别,科学报告,13(2023)19055。。 [14] H. Liu,T。Tang,《泛滥成灾与基因集的泛癌遗传分析》,癌症遗传学,278-279(2023)91-103。 [15] H. Liu,T。Tang,《胶质瘤IGFBP的生物信息学研究》,涉及其诊断,预后和治疗预测值,AM J Transl Res,15(2023)2140-2155。 [16] H. Liu,T。Tang,《泛滥成灾基因套件的泛 - 癌遗传分析》,Biorxiv,(2023),2023.2002。 2025.529997。 [17] H. Liu,库糖凋亡在肾脏肾透明细胞癌中的表达和潜在免疫受累,癌症遗传学,274-275(2023)21-25。Brosnan,A。Ahier,A。Hahn,C.M。Haynes,O。Rackham,A。Filipovska,S。Zuryn,ATFS-1,通过促进转录修复,自然细胞生物学,25(2023)1111-1120来抵消线粒体DNA损伤。[10] L. Ou,H。Liu,C。Peng,Y.[11] H. Liu,J。Weng,C.L.H。Huang,A.P。 杰克逊,癌症的电压门控钠通道,生物标志物研究,12(2024)70。 [12] H. Liu,A。Dong,A.M。 Rasteh,P。Wang,J。Weng,乳腺癌中新型T细胞CD8 +标记的鉴定,Scientific Reports,14(2024)19142。 [13] H. Liu,T。Tang,基于MAPK信号途径的胶质瘤亚型,机器学习风险模型和关键集线器蛋白识别,科学报告,13(2023)19055。。 [14] H. Liu,T。Tang,《泛滥成灾与基因集的泛癌遗传分析》,癌症遗传学,278-279(2023)91-103。 [15] H. Liu,T。Tang,《胶质瘤IGFBP的生物信息学研究》,涉及其诊断,预后和治疗预测值,AM J Transl Res,15(2023)2140-2155。 [16] H. Liu,T。Tang,《泛滥成灾基因套件的泛 - 癌遗传分析》,Biorxiv,(2023),2023.2002。 2025.529997。 [17] H. Liu,库糖凋亡在肾脏肾透明细胞癌中的表达和潜在免疫受累,癌症遗传学,274-275(2023)21-25。Huang,A.P。杰克逊,癌症的电压门控钠通道,生物标志物研究,12(2024)70。[12] H. Liu,A。Dong,A.M。 Rasteh,P。Wang,J。Weng,乳腺癌中新型T细胞CD8 +标记的鉴定,Scientific Reports,14(2024)19142。[13] H. Liu,T。Tang,基于MAPK信号途径的胶质瘤亚型,机器学习风险模型和关键集线器蛋白识别,科学报告,13(2023)19055。[14] H. Liu,T。Tang,《泛滥成灾与基因集的泛癌遗传分析》,癌症遗传学,278-279(2023)91-103。[15] H. Liu,T。Tang,《胶质瘤IGFBP的生物信息学研究》,涉及其诊断,预后和治疗预测值,AM J Transl Res,15(2023)2140-2155。[16] H. Liu,T。Tang,《泛滥成灾基因套件的泛 - 癌遗传分析》,Biorxiv,(2023),2023.2002。2025.529997。[17] H. Liu,库糖凋亡在肾脏肾透明细胞癌中的表达和潜在免疫受累,癌症遗传学,274-275(2023)21-25。[18] L. Hengrui,《中药用于癌症治疗中使用的有毒药物的例子》,J Tradit Chin Med,43(2023)209-210。[19] H. Liu,J。Weng,《 Rad51的Pan-Cancer生物信息学分析》,涉及诊断,预后和治疗预测的值,肿瘤学的前沿,12(2022)。[20] H. Liu,J。Weng,胶质瘤中细胞周期蛋白依赖性激酶2(CDK2)的全面生物信息学分析,Gene,(2022)146325。[21] H. Liu,T。Tang,Pan-Cancer的库糖胞化和铜代谢相关的基因集,肿瘤学的边界,12(2022)952290。[22] H. Liu,Y。Li,Cornichon家族AMPA受体辅助蛋白4(CNIH4)在头部和颈部鳞状细胞癌中的潜在作用,癌症生物标志物:疾病标志物A部分(2022)。[23] H. Liu,J.P。Dilger,J。Lin,pan-Cancer-Biodorminicals-Informinical-Informicals Trpm7的文献综述,Pharmacol Ther(2022)108302。[24] H. Liu,cuproptosis Gene Set的Pan-Canter概况,《美国癌症研究杂志》,第12期(2022)4074-4081。[25] Y. Liu,H。Liu,氨基酰基TRNA合成酶复合物的临床能力相互作用多功能蛋白1(AIMP1),用于头颈鳞状细胞癌,癌症生物标志物:疾病标志物A节A节(20222)。[26] Y. Li,H。Liu,Y。Han,在头部和颈部鳞状细胞癌中,Cornichon家族AMPA受体辅助蛋白4(CNIH4)的潜在作用,研究方形(2021)。 '
[1] B. J. Kullberg,M。C。Arendrup,N。Engel。J. Med。 2015,373(15),1445。 [2] F. Bongomin,St.Gago,R。Oladele,D。W。Denning,J. 2017 Fungi,3,4。 [3] B. Halford,化学。 eng。 新闻2021,99,7。 [4] HH Kong,J。 A. City,2020 Science,368(6489),365。 [5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。 微生物。 感染。 2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。J. Med。2015,373(15),1445。 [2] F. Bongomin,St.Gago,R。Oladele,D。W。Denning,J. 2017 Fungi,3,4。 [3] B. Halford,化学。 eng。 新闻2021,99,7。 [4] HH Kong,J。 A. City,2020 Science,368(6489),365。 [5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。 微生物。 感染。 2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。2015,373(15),1445。[2] F. Bongomin,St.Gago,R。Oladele,D。W。Denning,J.2017 Fungi,3,4。[3] B. Halford,化学。eng。新闻2021,99,7。[4] HH Kong,J。A. City,2020 Science,368(6489),365。[5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。 微生物。 感染。 2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。[5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。微生物。感染。2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。2016,22(1),87。D. R. Giaciobbe,A。E。E.[7]控制与预防。Auris候选人。https://www.cdc.gov/candidal/underx.html。访问2021。[8] J.A. Moderns,临床。微生物。感染。2004,10(补充1),1。[9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。mycol。2011,49(6),561。[10] D. Maubon,C。Garnaud。2014,40(9),1241。[11] M. Canutonian Mass,F。GutierezRode,Infect。dis。2002,2(9),550。M. C. Fisher,N。J. J. Hawkins,D。[13]社论。nat。微生物。2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。2017,2(8),17120。[14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。修订版Discov。2019,18(8),609。 [15] E. Ferri,C。What,C。E. McKenna,Biochem。 Pharmacol。 2016,106,1。 F. Mietton,E。Ferri,M。Champel,N。Zala,D。Maubon,Y。 A. Kashemirov,M。Hull,M。Cornet,C。McKenna,J。Govin,C。Petosa,Nat。 公社。 2017,8,15482。 [17] C. Y. Wang,P。Filipaposole,趋势生物化学。 SCI。 2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.2019,18(8),609。[15] E. Ferri,C。What,C。E. McKenna,Biochem。Pharmacol。2016,106,1。F. Mietton,E。Ferri,M。Champel,N。Zala,D。Maubon,Y。A. Kashemirov,M。Hull,M。Cornet,C。McKenna,J。Govin,C。Petosa,Nat。 公社。 2017,8,15482。 [17] C. Y. Wang,P。Filipaposole,趋势生物化学。 SCI。 2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.A. Kashemirov,M。Hull,M。Cornet,C。McKenna,J。Govin,C。Petosa,Nat。公社。2017,8,15482。[17] C. Y. Wang,P。Filipaposole,趋势生物化学。SCI。 2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.SCI。2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.2015,40(8),468。[18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。今天,2011年,16(17 - 18),831。[19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。parm。res。2015,38(9),1686。M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.