人类遗传疾病通常是由复合杂合性突变引起的,其中突变基因的每个等位基因都具有不同的遗传病变。但是,由于缺乏适当的模型,对此类突变的研究受到阻碍。在这里,我们描述了在强制性酶二聚体中的复合异伴变体的动力学模型,该变体在一个单体中包含一个突变,而第二个单体中的另一个突变中包含一个突变。该酶由人YarS2编码用于Mito-trosyl-tRNA合成酶(MT-Tyrrs),该酶是氨基化酪氨酸到MT-TRNA Tyr的氨基酰基。yarS2是MT-氨基酰基-TRNA合成酶的基因的成员,其中致病性突变的疾病严重程度与酶活性之间的相关性有限。我们在YARS2中识别一对与新生儿死亡有关的化合物杂合变体。我们表明,虽然每个突变在MT-TYRR的同型二聚体中导致氨基酰化的最小缺陷,但反式跨性别的两个突变会协同降低酶活性,从而更大。因此,这种动力学模型准确地概括了疾病的严重程度,强调了其研究YARS2突变的效用及其对具有复合杂合突变的其他疾病的泛化潜力。
细胞绘画近年来引起了人们的兴趣,因为它使研究人员能够捕捉到对各种扰动的细胞反应的全面图片。细胞绘画测定法使用六个污渍来标记DNA,细胞质RNA,核仁,肌动蛋白,高尔基体,质膜,内质网和线粒体。然而,“油漆”或染料的其他组合也是可能的,可以根据研究需求的方式可视化略有不同的细胞成分和过程。这样一个例子是fenovue™多晶体染色套件。该试剂盒允许DNA,脂质液滴,肌动蛋白,线粒体和溶酶体染色。及其溶酶体和脂质液滴标签该套件量身定制用于研究与
Elena Galli、Corentin Bourg、Wojciech Kosmala、Emmanuel Oger、Erwan Donal。使用机器学习聚类分析对射血分数保留的心力衰竭进行表型映射:预后和治疗意义。心力衰竭诊所,2021 年,17 (3),第 499-518 页。�10.1016/j.hfc.2021.02.010�。�hal-03246464�
此预印本的版权所有者于 2025 年 1 月 24 日发布此版本。;https://doi.org/10.1101/2024.05.15.24306285 doi: medRxiv preprint
如今,细菌中的抗生素耐药性已成为一个全球问题。 因此,在选择更有效的治疗溶液中,鉴定细菌菌株引起了特别的关注。 抗药性最常见的机制之一是鲍曼尼杆菌杆菌酶的产生。 本研究旨在通过表型和分子方法检测碳纤维烯酶产生菌株,用于2021年6月至2022年6月之间在Dezful的Ganjavian医院收集的临床标本中。。如今,细菌中的抗生素耐药性已成为一个全球问题。因此,在选择更有效的治疗溶液中,鉴定细菌菌株引起了特别的关注。抗药性最常见的机制之一是鲍曼尼杆菌杆菌酶的产生。本研究旨在通过表型和分子方法检测碳纤维烯酶产生菌株,用于2021年6月至2022年6月之间在Dezful的Ganjavian医院收集的临床标本中。timicrobial易感性测试,而使用CEFTAZIDIME和CEFTAZIDIME /CLAVAVAZIPIMIMIMIMIMIC ADIPEN和IMIPENIP和IMIPSICEN和IMIPEN IMIIPEN和IMIPEN IMIPEN和IMIPEN IMIIPEN和IMIPEN IMIIPEN和IMIPEN IMIPCEN和IMIPEN,将扩展的β-内酰胺酶(ESBLS)和金属近似群(MBLS)进行了延长的谱。 分别。BLA IMP,BLA SPM,BLA OXA-23和BLA OXA-24,BLA OXA-58的分子检测进行了Bla oxa-58。总共54个菌株,与米诺环素相比(13%)相比,头孢菌素的最高电阻率为头孢菌素(98.1%)和环氧菌(94.2%)(94.2%)。ESBL和MBL生产者分别为26%和80%。所有分离株都对结肠菌素具有中间抗性。抗碳青霉烯曲霉(CRAB)中最普遍的基因是BLA OXA-23,其次是BLA AOXA-24,BLA GES,BLA GES,BLA IMP和BLA OXA-58基因。本报告强调了螃蟹和对结菌素的中间抗性的存在,以及该地区不同碳酸碳纤维酶类别的几个基因的共存。因此,应及时确定抗性菌株,并应设计特定的治疗方案以控制治疗环境中抗药性基因的传播。
印度农业研究所 (IARI) 是印度首屈一指的农业研究、教育和推广机构。它通过基础研究、开发适用技术和开发人力资源,为科学和社会事业做出了卓越贡献。IARI 的遗传学部门被广泛认为是印度的“绿色革命中心”,是该研究所的重要支柱之一。该部门自 1960 年起就一直存在于 IARI。自成立以来,该部门一直为各种作物以及模式遗传生物的遗传学和植物育种的基础、战略和应用研究做出重大贡献。BP Pal 博士、MS Swaminathan 博士、AB Joshi 博士、HK Jain 博士和 VL Chopra 博士等几位杰出科学家的领导和远见卓识为 IARI 遗传学部门的发展做出了巨大贡献,使其成为遗传学和植物育种教学和研究的卓越中心。遗传学部门培养了一大批来自印度和国外的研究生。该学部的校友曾担任或正在担任各种国内外研究机构的遗传学家和植物育种家,享有很高的声誉。为了培养高素质的人力资源,该学部不断升级其研究生教育和研究计划,并紧跟作物遗传学和育种领域的最新发展。简介
明尼苏达州明尼阿波利斯市宜人街207号的化学系 321 11 Church St SE, Minneapolis, Minnesota, United States of America 12 13 d Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, 14 Minneapolis, Minnesota 55454, United States of America 15 16 e Department of Pharmacology, University of Minnesota, 321 Church St SE, Minneapolis, 17 Minnesota, United States of America 18 19 * Corresponding author 20
金属配合物因其在生物领域的用途而被认为在治疗中起着至关重要的作用 [1,2]。由于过渡金属配合物在生物技术和癌症治疗中的广泛用途,对过渡金属配合物与 DNA 之间相互作用的研究引起了广泛的兴趣 [3-8]。金属配合物是具有生物学意义的一类重要化学物质。这类物质在医学上经常用作 MRI 中的造影剂、放射性药物、溃疡和关节炎的治疗以及癌症的化疗。通常使用许多实验方法来追踪中性 pH 水溶液中 DNA 与金属配合物之间的相互作用,作为金属配合物-DNA 摩尔比的函数,这可能为这种联系提供间接证据 [9]-。铂和钌离子是迄今为止研究最多的金属离子,被认为是可能的抗癌药物的配位中心。许多抗癌药物以 DNA 作为关键靶分子。为了了解药物分子如何与 DNA 相互作用,研究了与 DNA 结合的金属配合物。
抽象动机:人类基因组学的最新进展表明,单个蛋白质中的错义突变会导致明显不同的表型。尤其是,RAS,MEK,PI3K,PTEN和SHP2等癌蛋白中的某些突变与各种癌症和神经发育障碍(NDDS)相连。虽然存在许多用于预测错义突变的致病性的工具,但将这些变体与某些表型联系起来仍然是一个主要挑战,尤其是在个性化医学的背景下。结果:为了填补这一空白,我们开发了质量(蛋白质表型突变分析仪),利用多种可预修建的机器学习方法并整合了多样化的生物物理学和基于网络动态的特征,以预测同一蛋白质突变的范围,可以促进癌症或NDD。我们通过对PI3Kα和PTEN的两种蛋白质病例的突变分析来说明质量在Phe-Notypes(癌/NDDS)预测中的效用。与其他七种预测工具相比,质子表现出了与癌症和考登综合征相关的PI3Kα突变的AUROC 0.8501的预测表型效应方面具有非凡的精度。对于与癌症,PHT和HCP相关的PTEN突变的多型预测,质子可以通过微观触觉实现0.9349的AUC。使用Shap模型的解释,我们对驱动表型形成的机制获得了见解。还提供了一个用户友好的网站部署。可用性:源代码和数据可在https://github.com/spencer-jrwang/protphemut上找到。我们还提供一个用户友好的网站,网址为http://netprotlab.com/protphemut。补充信息:可以在线生物信息学上获得补充数据。图形摘要: