在应用方面,这些主题突出 - 但不限于 - 可用于回答生物学问题(基因组学,转录组学,系统基因组学,代谢组学,蛋白质组学,蛋白质组学,chip -Seq,比较基因组学,现象学等)的不同类型的“ OMICS”类型。他们将了解可行性和数据分析的不同方法。此外,学生还将了解生物科学的数字化,其中包括机器可读的形态学表型注释,表型数据库,生物图像分析等。
英国首席伙伴罗比·沃教授罗比·沃(Robbie Waugh),丹迪澳大利亚大学生命科学学院,合伙人杰弗里·芬奇(Geoffrey Fincher)教授,澳大利亚研究委员会植物细胞壁卓越中心;澳大利亚植物现象设施的植物加速器Rachel Burton博士; Ben Trevaskis博士,Csiro Black Mountain Laboratories;澳大利亚植物功能基因组学中心首席执行官彼得·兰格里奇(Peter Langridge)教授探索了下丘脑炎症与内分泌信号传导之间的联系:神经元动力学在健康衰老中的作用。£29,860
高通量技术为基因组学、转录组学、蛋白质组学、表型组学和代谢组学分析提供了广泛的组学数据集。这些进步伴随着不断发展的生物信息学工具,整合了组学相关数据,提供了有关植物分子系统及其功能的关键信息(Choi,2019 年)。这些技术显著推动了植物组学研究,研究基因功能、调控和适应性。此外,它们有助于恢复大量植物多样性,这对于遗传改良、粮食安全和保护工作至关重要(Kumar 等人,2021 年)。通过整合来自基因组学、转录组学、蛋白质组学和代谢组学的多层次生物数据,可以全面研究和洞察控制对非生物胁迫反应的分子方面。本研究主题集成了先进的高通量技术、多组学、生物信息学、系统生物学和人工智能,以探索植物对环境限制的压力和耐受性。它包括九篇原创研究文章,增强植物对干旱、寒冷、紫外线辐射、洪水和低氮胁迫等压力源的适应力。文章涵盖了重要的植物物种:水稻、马铃薯、卷心菜、甘蔗、杨树、南极苔藓(Pohlia nutans 和 Leptobryum pyriforme)和濒危植物物种 Myricaria laxi flora。此外,一篇综述探讨了基因组工程的最新进展以及 CRISPR-Cas9 介导的基因组编辑在可持续农业中的作用。本研究主题探索了各种尖端技术,以增强植物对环境挑战的适应力。这些包括转录组学、蛋白质组学、代谢组学和表型组学。Dwivedi 等人进行了首次研究,采用高通量表型组学参数来选择生殖阶段干旱胁迫 (RSDS)
Lydia Teboul 1 , James Amos-Landgraf 2,3,4 , Fernando J. Benavides 5 , Marie-Christine Birling 6 , Steve DM Brown 7 , Elizabeth Bryda 8 , Rosie Bunton-Stasyshyn 1 , Hsian-Jean Chin 9 , Martina Crispo 10 , Fabien Fabie 12 Craig L. Franklin 13 , Ernst-Martin Fuchtbauer 14 , Xiang Gao 15 , Christelle Golzio 16 , Rebecca Haffner 17 , Yann Hérault 6,16 , Martin Hrabe de Angelis 18,19,20 , Kevin C. Kent Lloyd 2 , Luyson Lluyson 2 , Lluyson Magnus 21 . 23,24 , Stephen A. Murray 25 , Ki-Hoan Nam 26 , Lauryl MJ Nutter 27 , Eric Pailhoux 28 , Fernando Pardo Manuel de Villena 29,30 , Kevin Peterson 25 , Laura Reinholdt 25 , Radislav 3 Sedla Shiko , Jeshiko Jeshiko 32 33 , Cynthia Smith 34 , Toru Takeo 35 , Louise Tinsley 1 , Jean-Luc Vilotte 36 , Søren Warming 37 , Sara Wells 1,38 , C. Bruce Whitelaw 39 , Atsushi Yoshiki 40 , Asian Mouse Mutagenesis Resource Association, INFRA construction* um*, Interna- tional Mammalian Genome Society*, International Mouse Phenotyping Con- sortium*, International Society for Transgenic Technologies*, Mutant Mouse Resource and Research Centers*, Phenomics Australia*, RRRC- Rat Resource and Research Center* & Guillaume Pavlovic 6
CRISPR-Cas9 编辑是一种可扩展的生物通路映射技术,但据报道会导致基因组发生各种不希望出现的大规模结构变化。我们对原代人类细胞中的基因组进行了阵列式 CRISPR-Cas9 扫描,以 101,029 个指导基因为靶点敲除 17,065 个基因。高维表型组学揭示了一种“邻近偏差”,其中 CRISPR 敲除与同一染色体臂上生物学上不相关的基因的敲除具有意想不到的表型相似性,重现了典型的基因组结构和结构变异。转录组学将邻近偏差与染色体臂截断联系起来。对已发表的大规模敲除和敲减实验的分析证实,这种影响在细胞类型、实验室、Cas9 递送机制和检测方式中普遍存在,并表明邻近偏差是由 DNA 双链断裂引起的,细胞周期控制起着中介作用。最后,我们展示了一种针对大规模 CRISPR 筛选的简单校正方法,以减轻这种普遍存在的偏见,同时保留生物学关系。
内布拉斯加大学林肯分校非生物胁迫耐受性博士后职位 内布拉斯加大学林肯分校 Walia 实验室现提供博士后职位,研究水稻和玉米的耐热和耐旱机制。该职位将利用全植物生理学、表型组学和分子方法,专注于谷物对耐热和耐旱胁迫反应的分子和遗传学表征。该项目的目标是从分子层面理解发育事件与非生物胁迫之间的相互作用。具有基因编辑、突变体分析、种子生物学、分子相互作用和/或表达分析方面的经验者优先考虑。应聘者必须拥有植物生物学、分子生物学或植物遗传学或密切相关领域的博士学位。有出版作品证据并对使用分子和功能基因组学方法有浓厚兴趣的候选人将优先考虑。薪水与经验和资历相称。感兴趣的候选人请通过电子邮件向 Harkamal Walia 博士(hwalia2@ unl.edu)申请。请在您的电子邮件中包含以下内容:(1) 简历和 (2) 3 位推荐人的联系信息。如需更多信息,请访问:https://www.unl.edu/psi/harkamal-walia ; https://agronomy.unl.edu/walia ; https://www.unl.edu/psi/ ;
最新的基础设施,以促进气候变化研究。独特的基础设施设施。高通量植物现象学,自由空气温度富集设施(FATE),Free Air Co 2富集设施(面部),CO 2温度梯度腔室(CTGC),气相色谱,原子吸收分光光度计,环境增长室,环境增长室,环境增长室,UV-VIS分光光度计,uv-vis分光光度计,热能仪,dift> <<已在各个ICAR机构建立,以促进气候变化研究。已经进行了心理测量室的构建和操作,以研究不同环境条件的影响,即温度,湿度和空气流动对牲畜的影响,特别是参考了牛和水牛,具有CO 2的环境生长室以及温度控制和特殊的量热度系统来研究牲畜对热应激的反应。定制招聘中心(CHC)已在121个NICRA村庄中建立,以确保及时运营的农具可用性。
摘要 人工智能 (AI) 是一门科学,它涉及开发模仿人类智能的机器。机器学习 (ML) 是人工智能的一个子域,其中机器可以自动从数据中学习,而无需明确编程。农业不断受到压力,以用更少的资源生产更多。AI 和 ML 技术能够通过分析农业数据来优化资源利用率。它通过预测各种输入参数和预测作物的收获后寿命改变了当今农业的面貌。本章讨论了可用的不同 AI 和 ML 技术以及它们如何在农业生命周期的不同阶段使用。本章涵盖了农业中需要 AI 和 ML 的广泛领域。它包括土壤、灌溉和疾病管理。本章还介绍了人工智能在植物表型组学领域的重要性。本章讨论了地理信息系统 (GIS) 和遥感与人工智能相结合的可能用途。
Lydia Teboul 1 , James Amos-Landgraf 2,3,4 , Fernando J. Benavides 5 , Marie-Christine Birling 6 , Steve DM Brown 7 , Elizabeth Bryda 8 , Rosie Bunton-Stasyshyn 1 , Hsian-Jean Chin 9 , Martina Crispo 10 , Fabien Fabie 12 Craig L. Franklin 13 , Ernst-Martin Fuchtbauer 14 , Xiang Gao 15 , Christelle Golzio 16 , Rebecca Haffner 17 , Yann Hérault 6,16 , Martin Hrabe de Angelis 18,19,20 , Kevin C. Kent Lloyd 2 , Luyson Lluyson 2 , Lluyson Magnus 21 . 23,24 , Stephen A. Murray 25 , Ki-Hoan Nam 26 , Lauryl MJ Nutter 27 , Eric Pailhoux 28 , Fernando Pardo Manuel de Villena 29,30 , Kevin Peterson 25 , Laura Reinholdt 25 , Radislav 3 Sedla Shiko , Jeshiko Jeshiko 32 33 , Cynthia Smith 34 , Toru Takeo 35 , Louise Tinsley 1 , Jean-Luc Vilotte 36 , Søren Warming 37 , Sara Wells 1,38 , C. Bruce Whitelaw 39 , Atsushi Yoshiki 40 , Asian Mouse Mutagenesis Resource Association, INFRA construction* um*, Interna- tional Mammalian Genome Society*, International Mouse Phenotyping Con- sortium*, International Society for Transgenic Technologies*, Mutant Mouse Resource and Research Centers*, Phenomics Australia*, RRRC- Rat Resource and Research Center* & Guillaume Pavlovic 6
Scheduleed Time讲座在线或讲座室(Ultuna或Alnarp)文学第4周14月20日13-15课程SRS/MD(13-14)Alnarp/Uppsala强制性21- JAN 21- JAN 10-1植物繁殖MG Alnarp/Uppsala或Uppsala orthodox__1; orthodox_2; ORTIZ_3 TUE 21- 1月11日11-12农作物驯化Ch alnarp/uppsala fernie and yan 2019; Purugganan 2019 TUE 21-JAN 13-15植物保护生物学的简介和历史 +介绍研讨会SRS Alnarp/uppsala tronsmo ch 1 + 2; Denis Murphy CH 7,第7.5 + CH 9,第9.1-9.3节21-JAN 15-16参与性驯化Am Alnarp/Uppsala Leakey等。2022,Franzeel等。1996年1月22日至22日10-12谷物的育种方法AC在线Tee等。1975; El-Sarya等。(2014)。George Aquakaah CH 16 THU 23-JAN 10-12 BROUP PHENTYPING和PEROMICS AC ALNARP/UPPSALA GEORGE ACECACAAAH CH 12 THU 23-JAN 13-15 13-15生物信息学介绍LNARP/UPPSALA强制性FRI 24-JAN FRI 24-JAN 13-15研究日/
