引言低介电常数材料被开发出来以替代二氧化硅作为层间电介质[1]。这些材料在半导体封装、层间电介质、电子和通信设备领域显示出巨大的应用。该领域的一个潜在问题是电阻-电容延迟、串扰噪声和过度的功率耗散[2,3]。因此,研究人员使用具有更高绝缘性和更低介电常数(≤2.5或超低≤2.0)的材料[4-7]。通常,根据克劳修斯-莫索蒂方程[8],已经设计出各种方法来设计绝缘聚合物材料和具有降低介电常数值的材料。前者是具有低电偶极化学键的材料,例如脂环族基团、氟化基团,或将大摩尔体积的材料,例如氟、苯基和联苯引入*通讯作者。电子邮件:sundusm.sm@gmail.com
1,5二取代的双环[2.1.1]己烷是桥接的脚手架,具有明确定义的出口载体,它们在药物化学中变得越来越流行,因为它们已饱和,饱和的Ortho-Ortho-Ortho替代苯基环。在这里,我们开发了第一个基于刘易斯酸催化的[2+2]光载量载体的对映射催化策略,以获取这些基序作为对映基型支架,从而为其在多种药物类似物中掺入的有效方法提供了有效的方法。在癌细胞活力研究中已经评估了含生物酶的药物,观察到在某些情况下,两种对映体的生物学活性高度不同。这表明,对药物模拟的绝对构型和三维性的控制对其生物活性具有很大的影响,这突出了对bicyclo [2.1.1]己烷核心建造的立体选择方法的需求。
Edman降解是通过从肽链的氨基端依次去除一个残基来纯化蛋白质的过程。为解决通过水解条件损害蛋白质的问题,Pehr Edman创造了一种新的标记和切割肽的方法。埃德曼(Edman)想到了一次仅删除一个残留物的方法,这并没有损害整体测序。这是通过添加异硫氰酸苯基苯基苯基苯基苯基苯基苯甲酸苯基苯基苯甲酸苯甲酸苯甲酸苯甲酰胺的衍生物来完成的。然后在不太苛刻的酸性条件下裂解N末端,从而产生苯基噻吩家(PTH) - 氨基酸的环状化合物。可以重复其余残基的方法,一次将一个残基分开。Edman降解非常有用,因为它不会损害蛋白质并允许在更少的时间内对蛋白质进行测序。
摘要在药物化学中,生物膜替代品的概念至关重要,因为它可以用作扩展生物活性化学空间的合理性,以解决铅优化问题,例如缺乏效力,效能或药物科动力学或动力学/动态问题。在药物化学中,最重要的构建块之一(就参与大量化学空间而言)是2-苯甲基部分,这是不同药物样实体的关键组成部分。尽管药物发现界已经认识到核心2-苯甲胺结构,但对本机可以进行的各种基于环的救助程序的关注很少。在这方面,报道了对显示药理学活性的2-羟甲胺的综述。 提供了柔性,开放胺的序列的详细描述,描述了治疗靶标和其他有效的生物活性实例,这将是苯基,杂芳基和其他对药物发现社区具有高价值的替代单元的宝贵存储库。在这方面,报道了对显示药理学活性的2-羟甲胺的综述。提供了柔性,开放胺的序列的详细描述,描述了治疗靶标和其他有效的生物活性实例,这将是苯基,杂芳基和其他对药物发现社区具有高价值的替代单元的宝贵存储库。
摘要:我们已经对聚(3-己基噻吩)(P3HT)(P3HT)和[6,6] - 苯基C61丁基甲基甲基酯酯活性层活性层活性层散装散装量量形的理论入射光子到电流(IPCE)作用光谱。通过玻璃基材/SIO 2/ITO/PEDOT的结构的二维光学模型:PSS/P3HT:PCBM(1:1)/CA/AL,该设备的光响应已计算出针对不同的光活性层和CA层的厚度,从而可以找到最大的设备构造,从而可以在最大程度上效率地效果,从而获得了最大的效果效果,从而可以在上位效果,从而获得最大的效果。已经计算出电场强度,能量耗散,发电速率和IPCE,以提高设备的性能。有限元方法在1.5 AM照明的100 mW/cm 2的入射强度下执行模拟。发现,最佳结构是通过180 nm光活性层和5 nm Ca层厚度实现的。
溶液中,用于制造新一代电子和光电子设备,其特点是机械灵活性、重量轻和制造技术廉价。在这个领域,这些碳同素异形体受到推崇,不仅是因为它们迷人的结构和物理特性,还因为它们最初是少数几个由于其强电子亲和力而能够显示大量 n 型传输的分子系统之一。然而,在其原始形式下,C 60 分子溶解度非常低,不能提供最初设想的使用灵活性。富勒烯化学 1 的发展以及使用这些方法合成的大量可溶液加工的衍生物,最终推动了它们的使用,也激发了一大批科学家和工程师对这些分子的热情。此时,富勒烯已成为多种器件的常见组成部分,其中最受欢迎的是苯基-C 61 -丁酸甲酯 (PCBM) 衍生物 2,它不仅能与其他有机
使用转录组数据的药物重新定位研究最近引起了人们的关注。In this study, we attempted to identify new target proteins of the urotensin-II receptor antagonist, KR-37524 (4-(3-bromo-4-(piperidin-4-yloxy)benzyl)- N -(3-(dimethylamino)phenyl)piperazine-1-carboxamide dihydrochloride), using a transcriptome-based drug repositioning approach.为此,我们获得了KR-37524诱导的基因表达分布在四种细胞系(A375,A549,MCF7和PC3)中的变化,并将其与鉴于lincs L1000数据库中可用的药物诱导的基因表达变化的变化进行了比较,以识别出批准的基因表达谱的识别基因表达谱的变化。此处,使用连接得分计算两个基因表达谱变化之间的相似性。然后,我们选择了在每种细胞系中连通性评分最高(总共12种药物)作为KR-37524的潜在靶标的最高连通性评分的最高连接性评分的蛋白质。使用体外结合测定法实验证实了七个潜在的靶蛋白。通过此分析,我们确定了神经学调节的5-羟色胺转运蛋白是KR-37524的新靶蛋白。这些结果表明,基于转录组的药物重新定位方法可用于识别给定化合物的新靶蛋白,我们提供了本研究中开发的独立软件,该软件将作为药物重新定位的有用工具。
摘要:现代邻近标记技术在理解生物分子相互作用方面取得了重大进展。然而,当前的工具主要使用与复杂生物环境不兼容的激活模式,限制了我们在动物模型中研究细胞和组织水平微环境的能力。在这里,我们报告了 μ Map-Red,这是一个邻近标记平台,它使用红光激发的 Sn IV 二氢卟酚 e6 催化剂来激活苯基叠氮化物生物素探针。我们通过展示体外通过多层组织的光子控制蛋白质标记来验证 μ Map-Red,然后我们将我们的平台应用于纤维素以标记 EGFR 微环境,并通过 STED 显微镜和定量蛋白质组学验证性能。最后,为了展示复杂生物样本中的标记,我们在小鼠全血中部署了 μ Map-Red 来分析红细胞表面蛋白。这项工作代表了在复杂组织环境和动物模型中基于光的邻近标记方法的重大进步。
微生物代谢物在胰岛素抵抗和2型糖尿病(T2D)的发病机理中起关键作用。使用16S rRNA基因测序和代谢组学评估了关于发酵高粱(FS)对T2D及其对代谢物的调节及其代谢物的调节的初步研究。fs可以改善高血糖,胰岛素抵抗,并逆转了与T2D呈正相关的机会性致病细菌(例如振荡器,乙酰屈射器和乙酰维利他)。fs促进了有益细菌(Muribaculum,parabacteroides和Phocaeicola)的生长,与粪便丁酸酯和丙酸酯与T2D成反比。fs降低了微生物代谢产物(硫酸盐,吲哚撒拉酸酯,硫酸硫酸盐,吲哚-3-醛)的血清浓度。fs增加了与T2D的苯基丙酸,苯基硫酸盐,缬氨酸,胆汁酸,牛胆酸,urs氧化胆酸和胆酸的水平。发酵高粱对T2D缓解的有益作用归因于肠道菌群及其相关的属代谢物的调节。