摘要非小细胞肺(NSCL)和结直肠癌经常与表皮生长因子受体(EGFR)的致癌激活相关,这是受体酪氨酸激酶(RTK)家族的成员。当前的酪氨酸激酶抑制剂(TKI)容易受到耐药性突变的影响,并诱导了对正常EGFR S的细胞毒性作用。带嘌呤的苯咪唑的同余性质具有模仿基于嘌呤的ATP的结合模式并防止其与EGFR活性位点的接触的巨大潜力。在这里,我们报告了50种设计的苯咪唑衍生物以及Gefitinib和ATP的分子对接,以分析和比较EGFR WT和T790M活性位点的结合模式。配体的设计基于我们先前的研究,我们建议评估与双键接头的酮和氨基 - 苯并咪唑,以及在各个位置附有电子捐赠和电子撤回的苯基基团。对接模拟表明,酮苯并咪唑在两个EGFR配合物中占据了前十名最高结合亲和力。与其他具有-8.1(7C)和-7.8(11C)KCAL/MOL在EGFR WT中的结合能相比,具有更稳定的复合物的磺酰基取代基的存在,eGFR WT中的结合能,-8.3(7d)和-8.4(7d)和-8.4(1c)kcal/mol for t790m t790m for T790m。对苯咪唑的取代影响不仅有助于氢键和疏水相互作用,而且还对经常被转化的范德华力的力,这些力是负责苯并咪唑与EGFR结合口袋的形状互补性的负责。
摘要 疟疾是一种毁灭性疾病,导致全球发病率和死亡率显著上升。青蒿素类联合疗法是治疗疟疾的一线疗法,但随着这种疗法的耐药性不断上升,开发具有新作用机制的替代抗疟药的必要性也日益凸显。抑制疟原虫蛋白激酶为药物开发提供了一个尚未得到充分探索的机会。PfPK6 已被确定为恶性疟原虫无性血液阶段增殖的必需激酶,但尚未开展药物化学研究以开发抑制剂。在这项研究中,我们报告了利用分裂荧光素酶三杂交技术,使用 KinaseSeeker 检测法确定 Ki8751 是一种 PfPK6 抑制剂(IC 50 = 14 nM)。设计、合成了一系列 79 种 Ki8751 的 1-苯基-3-(4-(喹啉-4-基氧)苯基)脲衍生物,并评估了它们对 PfPK6 的抑制作用和抗疟原虫活性。通过基团效率分析,我们确定了支架上关键基团对抑制 PfPK6 的重要性,这与 II 型抑制剂药效团一致。我们重点介绍了有助于抗疟原虫活性的尾部基团修饰。我们报告了化合物 67 的发现,它是一种有效的 PfPK6 抑制剂(IC 50 = 13 nM),对恶性疟原虫血液阶段(EC 50 = 160 nM)有效,化合物 79 是一种优秀的 PfPK6 抑制剂(IC 50 < 5 nM),对恶性疟原虫血液阶段(EC 50 = 39 nM)和伯氏疟原虫肝脏阶段(EC 50 = 220 nM)具有双阶段抗疟活性。这些结果为将该化学型进一步开发为新型抗疟药和针对 PfPK6 的化学探针奠定了基础,从而可以进一步研究 PfPK6 的功能。
开发环境友好型分析方法的需求推动了制药行业寻求更环保的替代方案。超高效液相色谱 (UPLC) 以其效率而闻名,但传统上依赖于有毒溶剂。整合绿色分析化学 (GAC) 原则旨在解决环境问题,同时保持分析性能。这项工作旨在推进和验证一种绿色、高效的 UPLC 方法,用于同时定量片剂制剂中的二甲双胍 (MET) 和恩格列净 (EPI),遵循绿色化学原则并确保高分析精度。使用带有苯基柱和乙醇和高氯酸流动相的 UPLC-PDA 系统优化该方法。采用分析质量源于设计 (AQbD) 来优化关键方法参数。使用 GAPI、AMGS 和 AGREE 等指标来评估环境影响。进行了各种压力条件下的降解研究以测试方法的稳健性。该方法对 MET 和 EPI 实现了高回收率,且辅料的干扰极小。环境评估显示,分析生态评分 (AES) 高达 97,表明对环境的影响很小。AGREE 评分为 0.89,证明其与绿色化学原理高度一致。降解研究证实了该方法在压力条件下的稳定性和可靠性。开发的 UPLC 方法在分析可持续性方面取得了重大进步,为药物分析提供了一种环保、高效和精确的方法。该方法与绿色化学原理高度一致,并且在量化 MET 和 EPI 方面很有效,凸显了其作为药物分析可持续分析实践模型的潜力。
胶质瘤相关小胶质细胞和巨噬细胞 (GAMM) 是创造免疫抑制微环境的关键因素。通过抑制集落刺激因子 1 受体 (CSF-1R),可以有效地靶向它们。我们应用了非侵入性 PET/CT 和 PET/MRI,使用 18 F-氟乙基酪氨酸 ( 18 F-FET)(氨基酸代谢)和 N,N -二乙基-2-[4-(2- 18 F-氟乙氧基)苯基]-5,7-二甲基吡唑并 [1,5- a]嘧啶-3-乙酰胺 ( 18 F-DPA-714)(转运蛋白)来了解 GAMM 在胶质瘤发生中的作用,监测体内治疗引起的 GAMM 耗竭,并观察停药后 GAMM 的重新繁殖。方法:将同源小鼠 GL261 胶质瘤细胞原位植入 C57BL/6 小鼠(n=44),分别使用 CSF-1R 抑制剂 PLX5622(6-氟-N-((5-氟-2-甲氧基吡啶-3-基)甲基)-5-((5-甲基-1H-吡咯并[2,3-b]吡啶-3-基)甲基)吡啶-2-胺)或载体进行不同方案治疗,建立预处理模型和再植入模型。对小鼠进行纵向 PET/CT 和 PET/MRI 检查。结果:预处理模型显示,基于 MRI(44.5% 6 24.8%)、18 F-FET PET(18.3% 6 11.3%)和 18 F-DPA-714 PET(16% 6 19.04%)体积动态,所有组中肿瘤生长相似,表明 GAMM 不参与神经胶质瘤的发生。再增殖模型显示 18 F-DPA-714 摄取显著降低(2 45.6% ± 18.4%),即使再增殖后 GAMM 滤过率也显著降低,MRI 测量显示再增殖后肿瘤体积显著减小(2 54.29% ± 8.6%),18 F-FET 摄取显著降低(2 50.2% ± 5.3%)也支持这一结论。结论:18 F-FET 和 18 F-DPA-714 PET/MRI 可在各种 CSF-1R 治疗方案下对神经胶质瘤生长情况进行非侵入性评估。CSF-1R 介导的 GAMM 调节可能对神经胶质瘤的治疗或辅助治疗具有很高的兴趣。
由于其灵敏度,荧光光谱法(Weber 等,2020;Keuler 等,2021)已成为生物医学研究中最常用的方法之一。基于香豆素的传感器在检测体内重金属残留量方面具有巨大的前景(Wei 等,2018)。目前,人们正在积极寻找抗癌药物(Shen 等,2019;Spreckelmeyer 等,2018)。由于肿瘤细胞的活性和选择性不佳,抑制剂的数量非常有限,其作用仍然未知。该工作的作者介绍了一种基于香豆素支架和低分子量酚类化合物的抗癌抑制剂(Bai 等,2021)的研究,并展示了其通过破坏微管蛋白聚合在癌症治疗中的治疗效果。人们越来越关注对氧化还原电位有反应的癌细胞的化疗。化疗分子通过自破坏接头附着在荧光团上(Odyniec 等人,2019 年)。人们正在积极寻找一种既可以作为诊断剂又可以作为治疗剂的“荧光接头”。这种治疗诊断前药可以在自破坏香豆素接头的基础上制造出来。利用虚拟组合化学和分光光度法合成各种香豆素衍生物的可能性非常大,这使得作者(Rauhamäki 等人,2018 年)能够基于 3-苯基香豆素制造出一种强效的低分子量癌症抑制剂。发现新化合物在浓度为100 nM至1 μ M时可引起> 70%的抑制,而6-甲氧基-3-(4-(三氟甲基)苯基)-2H-色满-2-酮在浓度约为56 nM时可引起抑制。同时,没有任何取代基,3-苯基香豆素没有生物学效应。在(Ibrar等,2018)中,显示在阿尔茨海默病的治疗中,香豆素噻唑和恶二唑的有效作用是抑制胆碱能神经元中乙酰胆碱的水解
ꞏ标记的危害确定的成分:环氧树脂环氧树脂Novolac聚合物专有的聚糖基醚硫磺基,二苯基[4-(苯基硫硫代)苯基] - ,(OC-6-11) - (OC-6-11) bis [二苯基 - ,(OC-6-11)-Hexafluoroantimonate(1-)(1:2)ꞏ危害语句H226易燃液体和蒸气。H332吸入有害。H315引起皮肤刺激。H319引起严重的眼睛刺激。H317可能引起过敏性皮肤反应。H411对水生生物有毒,具有持久的影响。 ꞏ预防性陈述p210远离热量,热表面,火花,开火和其他点火源。 没有吸烟。 p261避免呼吸灰尘/烟气/烟雾/蒸气/喷雾。 p273避免释放到环境中。 P280戴防护手套/防护服/眼部保护/面部保护。 P301+P310如果吞咽:立即致电毒药中心/医生。 p302+p352如果在皮肤上:用大量的肥皂和水洗涤。 p304+p341如果吸入:如果呼吸困难,请拆除新鲜空气的受害者,并保持静止状态。 P305+P351+P338如果在眼睛中:用水谨慎冲洗几分钟。 删除隐形眼镜,如果有的话,易于执行。 继续冲洗。 p333+p313如果出现皮肤刺激或皮疹:获取医疗建议/注意。 p337+p313如果眼睛刺激持续存在:获取医疗建议/注意。 p370+p378在火灾中:使用:熄灭:耐酒精泡沫,燃烧粉末,二氧化碳。 P403+P235在一个通风良好的地方存储。H411对水生生物有毒,具有持久的影响。ꞏ预防性陈述p210远离热量,热表面,火花,开火和其他点火源。没有吸烟。p261避免呼吸灰尘/烟气/烟雾/蒸气/喷雾。p273避免释放到环境中。P280戴防护手套/防护服/眼部保护/面部保护。 P301+P310如果吞咽:立即致电毒药中心/医生。 p302+p352如果在皮肤上:用大量的肥皂和水洗涤。 p304+p341如果吸入:如果呼吸困难,请拆除新鲜空气的受害者,并保持静止状态。 P305+P351+P338如果在眼睛中:用水谨慎冲洗几分钟。 删除隐形眼镜,如果有的话,易于执行。 继续冲洗。 p333+p313如果出现皮肤刺激或皮疹:获取医疗建议/注意。 p337+p313如果眼睛刺激持续存在:获取医疗建议/注意。 p370+p378在火灾中:使用:熄灭:耐酒精泡沫,燃烧粉末,二氧化碳。 P403+P235在一个通风良好的地方存储。P280戴防护手套/防护服/眼部保护/面部保护。P301+P310如果吞咽:立即致电毒药中心/医生。p302+p352如果在皮肤上:用大量的肥皂和水洗涤。p304+p341如果吸入:如果呼吸困难,请拆除新鲜空气的受害者,并保持静止状态。P305+P351+P338如果在眼睛中:用水谨慎冲洗几分钟。删除隐形眼镜,如果有的话,易于执行。继续冲洗。p333+p313如果出现皮肤刺激或皮疹:获取医疗建议/注意。p337+p313如果眼睛刺激持续存在:获取医疗建议/注意。p370+p378在火灾中:使用:熄灭:耐酒精泡沫,燃烧粉末,二氧化碳。P403+P235在一个通风良好的地方存储。保持冷静。p501根据本地/地区/国家/国际法规处理内容/容器。ꞏ其他信息:混合物的15.2%由未知毒性的成分组成。包含15.2%的组件,对水生环境危害不明。ꞏ2.3其他危害ꞏPBT和VPVB评估的结果ꞏPBT:不适用。ꞏvpvb:不适用。
目标。紫杉醇诱导的周围神经病(PIPN)是紫杉醇的令人衰弱的,很难进行治疗的侧面。可溶性环氧化物水解酶(SEH)可以迅速将内源性抗炎介质的环氧化脱烯酸(EET)代谢为二羟基二酸酯。TIS研究旨在评估SEH抑制剂N-(1-(1-氧化)-4-磷酸胺] -n' - (三氟甲氧基)苯基)-UREA(TPPU)在大鼠PIPN中起关键作用,并为治疗提供了新的治疗目标。方法。建立了由NAB-列甲赛诱导的PIPN的Sprague-Dawley雄性大鼠模型。大鼠随机分为对照组,NAB-列甲赛组和Nab-Paclitaxel + TPPU(SEH抑制剂)组,每个组中有36只大鼠。检测到SEH抑制剂TPPU对行为测定,凋亡,神经胶质激活,轴突损伤,微结构以及血脊髓屏障的渗透性,并通过检查NF-κB信号通道的表达来探索基本机制。结果。Te results showed that the mechanical and thermal pain thresholds of rats were decreased after nab-paclitaxel treatment, accompanied by an increased expression of axonal injury-related proteins, enhanced cell apoptosis, aggravated destruction of vascular permeability, intense glial responses, and elevated in- fammatory cytokines and oxidative stress in the L4-L6 spinal cord.tppu通过抑制SEH和NF-κB信号通路的激活,通过降低杀菌性细胞因子的水平和氧化应激来解释PIPN。结论。TPPU通过增加紧密连接蛋白的表达来恢复机械和热阈值,减少细胞凋亡,减少轴突损伤和神经胶质反应以及保护血管通透性。tese fndings支持SEH在PIPN中的作用,并表明SEH的抑制代表了PIPN的潜在新治疗靶标。
摘要:过去 50 年来,人们已经发现了目前已知的六种硝苯地平 (NIF) 多晶型物,其中最新发现的一种 (δ) 于 2020 年发现,其来自一条不寻常的途径。这种多晶型物在热力学稳定性方面排名第二,但之前的所有研究人员都未能发现,直到在其熔体中接种了一种外来物质非洛地平的晶体,而非洛地平的分子构象与当时已知的所有其他 NIF 多晶型物都不同。鉴于实验室中的这一不寻常发现,我们研究了晶体结构预测 (CSP) 是否可以在“常规”搜索中找到这种多晶型物和其他多晶型物。我们表明,我们的 CSP 可以发现目前已知的所有有序的 NIF 多晶型物均为低能结构(排名 1、3、4 和 43),包括最近通过伪种子发现的一种(排名 4)。 NIF 是一种柔性分子,因此了解其众多构象中的哪一种可作为晶体的最佳构建块是很有意义的。对这一问题的实验研究受生存限制;也就是说,我们仅掌握可观察到的结构的信息,而没有掌握难以观察到或尚未发现的结构的信息。在这方面,我们的“计算机实验”可以访问所有可能性。我们发现,就苯基扭转而言,同平面(sp )构象产生的能量晶体比反平面(ap )构象产生的能量低,最稳定的 ap 晶体的能量比最稳定的 sp 结构高 4 kJ/mol。实验上,sp 构象在溶液中优于 ap,并且是晶体中观察到的唯一构象。就酯扭转而言,顺式/反式构象产生的能量晶体最低,其次是顺式/顺式构象,最后是反式/反式构象。实验表明,六种已知多晶型物中有五种包含顺式/反式构象异构体,一种包含顺式/顺式构象异构体,没有一种包含反式/反式构象异构体。总体而言,尽管 NIF 的构象空间复杂,但 CSP 在预测其多晶型物方面非常成功,并且定量评估了使用不同构象异构体作为晶体构建单元的相对成本。■ 简介
摘要背景:癌症是全球重大的公共卫生问题,是心血管疾病之后的第二大死亡原因。因此,本研究旨在从传统上用于治疗癌症的马达加斯加药用植物中识别新的天然化合物。方法:通过分子对接进行计算机模拟分析以模拟配体-蛋白质相互作用,并通过 SwissADME 和 ADMET 网络服务器建立四种研究化合物与血管生成靶蛋白 HIF-1α/乳腺癌 (PDB ID:3KCX) 和人类雄激素受体/前列腺癌 (PDB ID:1E3G) 相互作用的药代动力学特征。结果:对接结果显示,HIF-1α受体与化合物1(1′,4-二羟基-2,3′-二甲基-1,2′-联萘-5,5′,8,8′-四酮:-8.49kcal/mol)相互作用时结合能最好,其次是化合物3[(E)-5,6-二甲基-2-(2-甲基-3-(丙-1-烯基)苯基)-2H-色满:-8.43kcal/mol]、化合物2(6′-乙氧基-1′3′-二羟基-4,6-二甲基-1,2′-联萘-2,5′,8,8′-四酮:-7.80kcal/mol)和化合物4(甲基10-羟基- 2,4a,6a,9,12b,14a-六甲基-11-氧代-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-十四氢吡啶-2-羧酸酯:-7.63 kcal/mol)。受体 1E3G 对所有测试化合物表现出较差的结合亲和能,能量值高于 -11.99 kcal/mol(共晶)。基于氢键相互作用,配体 1 和 2 对两个蛋白质靶标 3KCX 和 1E3G 均显示出良好的药效团特征。配体 3 不通过氢键与所选受体相互作用。这些植物化合物的药代动力学特征表明它们具有口服活性且安全。我们的团队之前使用色谱和光谱技术 (LC/MS/NMR) 分离了它们并阐明了它们的化学结构。结论:配体 1 和 2 可被视为热门药物,因为除了它们与受体的热力学稳定性之外,它们还表现出良好的药代动力学特征,因此可用作乳腺癌和前列腺癌的替代疗法。这项研究为开发新的、经济高效且安全的植物性天然抗癌药物提供了巨大的潜力。
背景:COVID-19 大流行促使全世界努力寻找和开发潜在的预防和治疗方法,其中一种方法是测试已批准的药物。羟氯喹用于治疗疟疾、狼疮和类风湿性关节炎,其评估基于其对 COVID-19 的潜在治疗益处。尽管确定它对 COVID-19 无效,但该产品的新处方量显着增加。2020 年 3 月 31 日,FDA 在药品短缺网页上发布了有关羟氯喹短缺的信息。目的:目标是快速开发和实施一种灵敏且有选择性的分析方法,以评估羟氯喹药品的质量,这些药品尚未获准进入美国市场,以帮助解决药品短缺问题。方法:在带有串联质谱仪的 UHPLC 系统上对羟氯喹及其三种杂质进行分析。在具有亚 2 µm 核壳颗粒的先进苯基柱上实现色谱分离。设置10分钟梯度洗脱程序以确保足够的分辨率并保持高通量分析能力。串联质谱仪在多离子监测模式下对所有分析物进行正电喷雾电离操作。结果:该方法根据USP <1225>药典方法验证的要求进行验证。该方法经测定具有灵敏度和选择性,并成功应用于评估来自三个不同制造商的200毫克浓度硫酸羟氯喹片。结论:开发了一种采用先进柱技术的UHPLC-MS/MS方法,并对其进行了验证,可同时定量羟氯喹及其三种杂质。带有MRM检测的方法表现出足够的灵敏度、选择性和分析范围,并且有潜力作为运行时间为10分钟的高通量方法实施。该验证方法已成功应用于美国市场上已批准的硫酸羟氯喹药品的质量评估。这项工作也是正在进行的努力的一部分,旨在开发一个先进的分析平台,以建立研究准备和快速监管应对新出现的质量和公共卫生问题的能力。